Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Med Biol ; 69(10)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608645

RESUMO

Objective.In Magnetic Resonance (MR) parallel imaging with virtual channel-expanded Wave encoding, limitations are imposed on the ability to comprehensively and accurately characterize the background phase. These limitations are primarily attributed to the calibration process relying solely on center low-frequency Auto-Calibration Signals (ACS) data for calibration.Approach.To tackle the challenge of accurately estimating the background phase in wave encoding, a novel deep neural network model guided by deep phase priors is proposed with integrated virtual conjugate coil (VCC) extension. Concretely, within the proposed framework, the background phase is implicitly characterized by employing a carefully designed decoder convolutional neural network, leveraging the inherent characteristics of phase smoothness and compact support in the transformed domain. Furthermore, the proposed model with wave encoding benefits from additional priors, which incorporate transmission sparsity of the latent image and coil sensitivity smoothness.Main results.Ablation experiments were conducted to ascertain the proposed method's capability to implicitly represent CSM and the background phase. Subsequently, the superiority of the proposed method is demonstrated through confidence comparisons with competing methods, employing 4-fold and 5-fold acceleration experiments. In achieving 4-fold and 5-fold acceleration, the optimal quantitative metrics (PSNR/SSIM/NMSE) are 44.1359 dB/0.9863/0.0008 (4-fold) and 41.2074/0.9846/0.0017 (5-fold), respectively. Furthermore, the generalizability of the proposed method is further validated by conducting acceleration experiments with T1, T2, T2*, and various undersampling patterns. In addition, the DPP delivered much better performance than the conventional methods by exploring accelerated phase-sensitive SWI imaging. In SWI accelerated imaging, it also surpasses the optimal competing method in terms of (PSNR/SSIM/NMSE) with 0.096%/0.009%/0.0017%.Significance.The proposed method enables precise characterization of the background phase in the integrated VCC and wave encoding framework, supported via theoretical analysis and empirical findings. Our code is available at:https://github.com/sober235/DPP.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Aprendizado Profundo
2.
Magn Reson Med ; 92(1): 202-214, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38469985

RESUMO

PURPOSE: To develop a novel deep learning-based method inheriting the advantages of data distribution prior and end-to-end training for accelerating MRI. METHODS: Langevin dynamics is used to formulate image reconstruction with data distribution before facilitate image reconstruction. The data distribution prior is learned implicitly through the end-to-end adversarial training to mitigate the hyper-parameter selection and shorten the testing time compared to traditional probabilistic reconstruction. By seamlessly integrating the deep equilibrium model, the iteration of Langevin dynamics culminates in convergence to a fix-point, ensuring the stability of the learned distribution. RESULTS: The feasibility of the proposed method is evaluated on the brain and knee datasets. Retrospective results with uniform and random masks show that the proposed method demonstrates superior performance both quantitatively and qualitatively than the state-of-the-art. CONCLUSION: The proposed method incorporating Langevin dynamics with end-to-end adversarial training facilitates efficient and robust reconstruction for MRI. Empirical evaluations conducted on brain and knee datasets compellingly demonstrate the superior performance of the proposed method in terms of artifact removing and detail preserving.


Assuntos
Algoritmos , Encéfalo , Processamento de Imagem Assistida por Computador , Joelho , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Joelho/diagnóstico por imagem , Aprendizado Profundo , Estudos Retrospectivos , Artefatos
3.
Artigo em Inglês | MEDLINE | ID: mdl-38442049

RESUMO

Accurate detection and segmentation of brain tumors is critical for medical diagnosis. However, current supervised learning methods require extensively annotated images and the state-of-the-art generative models used in unsupervised methods often have limitations in covering the whole data distribution. In this paper, we propose a novel framework Two-Stage Generative Model (TSGM) that combines Cycle Generative Adversarial Network (CycleGAN) and Variance Exploding stochastic differential equation using joint probability (VE-JP) to improve brain tumor detection and segmentation. The CycleGAN is trained on unpaired data to generate abnormal images from healthy images as data prior. Then VE-JP is implemented to reconstruct healthy images using synthetic paired abnormal images as a guide, which alters only pathological regions but not regions of healthy. Notably, our method directly learned the joint probability distribution for conditional generation. The residual between input and reconstructed images suggests the abnormalities and a thresholding method is subsequently applied to obtain segmentation results. Furthermore, the multimodal results are weighted with different weights to improve the segmentation accuracy further. We validated our method on three datasets, and compared with other unsupervised methods for anomaly detection and segmentation. The DSC score of 0.8590 in BraTs2020 dataset, 0.6226 in ITCS dataset and 0.7403 in In-house dataset show that our method achieves better segmentation performance and has better generalization.

4.
IEEE Trans Med Imaging ; 43(5): 1853-1865, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38194398

RESUMO

Diffusion models with continuous stochastic differential equations (SDEs) have shown superior performances in image generation. It can serve as a deep generative prior to solving the inverse problem in magnetic resonance (MR) reconstruction. However, low-frequency regions of k -space data are typically fully sampled in fast MR imaging, while existing diffusion models are performed throughout the entire image or k -space, inevitably introducing uncertainty in the reconstruction of low-frequency regions. Additionally, existing diffusion models often demand substantial iterations to converge, resulting in time-consuming reconstructions. To address these challenges, we propose a novel SDE tailored specifically for MR reconstruction with the diffusion process in high-frequency space (referred to as HFS-SDE). This approach ensures determinism in the fully sampled low-frequency regions and accelerates the sampling procedure of reverse diffusion. Experiments conducted on the publicly available fastMRI dataset demonstrate that the proposed HFS-SDE method outperforms traditional parallel imaging methods, supervised deep learning, and existing diffusion models in terms of reconstruction accuracy and stability. The fast convergence properties are also confirmed through theoretical and experimental validation. Our code and weights are available at https://github.com/Aboriginer/HFS-SDE.


Assuntos
Algoritmos , Encéfalo , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos
5.
Med Phys ; 51(3): 1883-1898, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37665786

RESUMO

BACKGROUND: Deep learning methods driven by the low-rank regularization have achieved attractive performance in dynamic magnetic resonance (MR) imaging. The effectiveness of existing methods lies mainly in their ability to capture interframe relationships using network modules, which are lack interpretability. PURPOSE: This study aims to design an interpretable methodology for modeling interframe relationships using convolutiona networks, namely Annihilation-Net and use it for accelerating dynamic MRI. METHODS: Based on the equivalence between Hankel matrix product and convolution, we utilize convolutional networks to learn the null space transform for characterizing low-rankness. We employ low-rankness to represent interframe correlations in dynamic MR imaging, while combining with sparse constraints in the compressed sensing framework. The corresponding optimization problem is solved in an iterative form with the semi-quadratic splitting method (HQS). The iterative steps are unrolled into a network, dubbed Annihilation-Net. All the regularization parameters and null space transforms are set as learnable in the Annihilation-Net. RESULTS: Experiments on the cardiac cine dataset show that the proposed model outperforms other competing methods both quantitatively and qualitatively. The training set and test set have 800 and 118 images, respectively. CONCLUSIONS: The proposed Annihilation-Net improves the reconstruction quality of accelerated dynamic MRI with better interpretability.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Coração
6.
Artigo em Inglês | MEDLINE | ID: mdl-38147421

RESUMO

Supervised deep learning (SDL) methodology holds promise for accelerated magnetic resonance imaging (AMRI) but is hampered by the reliance on extensive training data. Some self-supervised frameworks, such as deep image prior (DIP), have emerged, eliminating the explicit training procedure but often struggling to remove noise and artifacts under significant degradation. This work introduces a novel self-supervised accelerated parallel MRI approach called PEARL, leveraging a multiple-stream joint deep decoder with two cross-fusion schemes to accurately reconstruct one or more target images from compressively sampled k-space. Each stream comprises cascaded cross-fusion sub-block networks (SBNs) that sequentially perform combined upsampling, 2D convolution, joint attention, ReLU activation and batch normalization (BN). Among them, combined upsampling and joint attention facilitate mutual learning between multiple-stream networks by integrating multi-parameter priors in both additive and multiplicative manners. Long-range unified skip connections within SBNs ensure effective information propagation between distant cross-fusion layers. Additionally, incorporating dual-normalized edge-orientation similarity regularization into the training loss enhances detail reconstruction and prevents overfitting. Experimental results consistently demonstrate that PEARL outperforms the existing state-of-the-art (SOTA) self-supervised AMRI technologies in various MRI cases. Notably, 5-fold  âˆ¼ 6-fold accelerated acquisition yields a 1 %  âˆ¼  2 % improvement in SSIM ROI and a 3 %  âˆ¼  6 % improvement in PSNR ROI, along with a significant 15 %  âˆ¼  20 % reduction in RLNE ROI.

7.
Bioengineering (Basel) ; 10(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37760209

RESUMO

Magnetic resonance (MR) image reconstruction and super-resolution are two prominent techniques to restore high-quality images from undersampled or low-resolution k-space data to accelerate MR imaging. Combining undersampled and low-resolution acquisition can further improve the acceleration factor. Existing methods often treat the techniques of image reconstruction and super-resolution separately or combine them sequentially for image recovery, which can result in error propagation and suboptimal results. In this work, we propose a novel framework for joint image reconstruction and super-resolution, aiming to efficiently image recovery and enable fast imaging. Specifically, we designed a framework with a reconstruction module and a super-resolution module to formulate multi-task learning. The reconstruction module utilizes a model-based optimization approach, ensuring data fidelity with the acquired k-space data. Moreover, a deep spatial feature transform is employed to enhance the information transition between the two modules, facilitating better integration of image reconstruction and super-resolution. Experimental evaluations on two datasets demonstrate that our proposed method can provide superior performance both quantitatively and qualitatively.

8.
Med Image Anal ; 88: 102877, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37399681

RESUMO

Recently, untrained neural networks (UNNs) have shown satisfactory performances for MR image reconstruction on random sampling trajectories without using additional full-sampled training data. However, the existing UNN-based approaches lack the modeling of physical priors, resulting in poor performance in some common scenarios (e.g., partial Fourier (PF), regular sampling, etc.) and the lack of theoretical guarantees for reconstruction accuracy. To bridge this gap, we propose a safeguarded k-space interpolation method for MRI using a specially designed UNN with a tripled architecture driven by three physical priors of the MR images (or k-space data), including transform sparsity, coil sensitivity smoothness, and phase smoothness. We also prove that the proposed method guarantees tight bounds for interpolated k-space data accuracy. Finally, ablation experiments show that the proposed method can characterize the physical priors of MR images well. Additionally, experiments show that the proposed method consistently outperforms traditional parallel imaging methods and existing UNNs, and is even competitive against supervised-trained deep learning methods in PF and regular undersampling reconstruction.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos
9.
Intensive Crit Care Nurs ; 79: 103491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37480701

RESUMO

OBJECTIVES: This study aimed to investigate the prevalence and risk factors for carbapenem-resistant Enterobacterales colonisation/infection at admission and acquisition among patients admitted to the intensive care unit. RESEARCH METHODOLOGY/DESIGN: A prospective and multicentre study. SETTING: This study was conducted in 24 intensive care units in Anhui, China. MAIN OUTCOME MEASURES: Demographic and clinical data were collected, and rectal carbapenem-resistant Enterobacterales colonisation was detected by active screening. Multivariate logistic regression models were used to analyse factors associated with colonisation/infection with carbapenem-resistant Enterobacterales at admission and acquisition during the intensive care unit stay. RESULTS: There were 1133 intensive care unit patients included in this study. In total, 5.9% of patients with carbapenem-resistant Enterobacterales colonisation/infection at admission, and of which 56.7% were colonisations. Besides, 8.5% of patients acquired carbapenem-resistant Enterobacterales colonisation/infection during the intensive care stay, and of which 67.6% were colonisations. At admission, transfer from another hospital, admission to an intensive care unit within one year, colonisation/infection/epidemiological link with carbapenem-resistant Enterobacterales within one year, and exposure to any antibiotics within three months were risk factors for colonisation/infection with carbapenem-resistant Enterobacterales. During the intensive care stay, renal disease, an epidemiological link with carbapenem-resistant Enterobacterales, exposure to carbapenems and beta-lactams/beta-lactamase inhibitors, and intensive care stay of three weeks or longer were associated with acquisition. CONCLUSION: The prevalence of colonisation/infection with carbapenem-resistant Enterobacterales in intensive care units is of great concern and should be monitored systematically. Particularly for the 8.5% prevalence of carbapenem-resistant Enterobacterales acquisition during the intensive care stay needs enhanced infection prevention and control measures in these setting. Surveillance of colonisation/infection with carbapenem-resistant Enterobacterales at admission and during the patient's stay represents an early identification tool to prevent further transmission of carbapenem-resistant Enterobacterales. IMPLICATIONS FOR CLINICAL PRACTICE: Carbapenem-resistant Enterobacterales colonization screening at admission and during the patient's stay is an important tool to control carbapenem-resistant Enterobacterales spread in intensive care units.


Assuntos
Carbapenêmicos , Unidades de Terapia Intensiva , Humanos , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Prevalência , Estudos Prospectivos , Fatores de Risco
10.
IEEE Trans Med Imaging ; 42(12): 3540-3554, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37428656

RESUMO

In recent times, model-driven deep learning has evolved an iterative algorithm into a cascade network by replacing the regularizer's first-order information, such as the (sub)gradient or proximal operator, with a network module. This approach offers greater explainability and predictability compared to typical data-driven networks. However, in theory, there is no assurance that a functional regularizer exists whose first-order information matches the substituted network module. This implies that the unrolled network output may not align with the regularization models. Furthermore, there are few established theories that guarantee global convergence and robustness (regularity) of unrolled networks under practical assumptions. To address this gap, we propose a safeguarded methodology for network unrolling. Specifically, for parallel MR imaging, we unroll a zeroth-order algorithm, where the network module serves as a regularizer itself, allowing the network output to be covered by a regularization model. Additionally, inspired by deep equilibrium models, we conduct the unrolled network before backpropagation to converge to a fixed point and then demonstrate that it can tightly approximate the actual MR image. We also prove that the proposed network is robust against noisy interferences if the measurement data contain noise. Finally, numerical experiments indicate that the proposed network consistently outperforms state-of-the-art MRI reconstruction methods, including traditional regularization and unrolled deep learning techniques.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos
11.
Int J Disaster Risk Reduct ; 92: 103736, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37197331

RESUMO

Improving rural households' subjective well-being is an important element of economic and social revitalization in the post-epidemic period. Based on the survey data obtained from rural households in Hubei Province, the center of the outbreak in China, and its surrounding areas, this paper explores the impact mechanisms of the COVID-19 epidemic on subjective well-being from both economic and sociological perspectives with the help of structural equation modeling. The results show that COVID-19 significantly influenced rural households' subjective well-being in China. Furthermore, COVID-19 indirectly affected their subjective well-being by influencing optimism. The negative impact is moderated by government intervention and income resilience. Therefore, strengthening the emergency management capacity of local governments and encouraging the diversification of rural households' income sources are important strategies to effectively resolve epidemic shocks and improve the level of well-being.

12.
Med Phys ; 50(12): 7684-7699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37073772

RESUMO

BACKGROUND: Wave gradient encoding can adequately utilize coil sensitivity profiles to facilitate higher accelerations in parallel magnetic resonance imaging (pMRI). However, there are limitations in mainstream pMRI and a few deep learning (DL) methods for recovering missing data under wave encoding framework: the former is prone to introduce errors from the auto-calibration signals (ACS) signal acquisition and is time-consuming, while the latter requires a large amount of training data. PURPOSE: To tackle the above issues, an untrained neural network (UNN) model incorporating wave-encoded physical properties and deep generative model, named WDGM, was proposed with additional ACS- and training data-free. METHODS: Generally, the proposed method can provide powerful missing data interpolation capability using the wave physical encoding framework and designed UNN to characterize the MR image (k-space data) priors. Specifically, the MRI reconstruction combining physical wave encoding and elaborate UNN is modeled as a generalized minimization problem. The designation of UNN is driven by the coil sensitivity maps (CSM) smoothness and k-space linear predictability. And then, the iterative paradigm to recover the full k-space signal is determined by the projected gradient descent, and the complex computation is unrolled to the network with optimized parameters by the optimizer. Simulated wave encoding and in vivo experiments are exploited to demonstrate the feasibility of the proposed method. The best quantitative metrics RMSE/SSIM/PSNR of 0.0413, 0.9514, and 37.4862 gave competitive results in all experiments with at least six-fold acceleration, respectively. RESULTS: In vivo experiments of human brains and knees showed that the proposed method can achieve comparable reconstruction quality and even has superiority relative to the comparison, especially at a high resolution of 0.67 mm and fewer ACS. In addition, the proposed method has a higher computational efficiency achieving a computation time of 9.6 s/per slice. CONCLUSIONS: The model proposed in this work addresses two limitations of MRI reconstruction in the wave encoding framework. The first is to eliminate the need for ACS signal acquisition to perform the time-consuming calibration process and to avoid errors such as motion during the acquisition procedure. Furthermore, the proposed method has clinical application friendly without the need to prepare large training datasets, which is difficult in the clinical. All results of the proposed method demonstrate more confidence in both quantitative and qualitative metrics. In addition, the proposed method can achieve higher computational efficiency.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Movimento (Física) , Algoritmos
13.
IEEE Trans Med Imaging ; 42(8): 2247-2261, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37027549

RESUMO

Quantitative magnetic resonance (MR) [Formula: see text] mapping is a promising approach for characterizing intrinsic tissue-dependent information. However, long scan time significantly hinders its widespread applications. Recently, low-rank tensor models have been employed and demonstrated exemplary performance in accelerating MR [Formula: see text] mapping. This study proposes a novel method that uses spatial patch-based and parametric group-based low-rank tensors simultaneously (SMART) to reconstruct images from highly undersampled k-space data. The spatial patch-based low-rank tensor exploits the high local and nonlocal redundancies and similarities between the contrast images in [Formula: see text] mapping. The parametric group-based low-rank tensor, which integrates similar exponential behavior of the image signals, is jointly used to enforce multidimensional low-rankness in the reconstruction process. In vivo brain datasets were used to demonstrate the validity of the proposed method. Experimental results demonstrated that the proposed method achieves 11.7-fold and 13.21-fold accelerations in two-dimensional and three-dimensional acquisitions, respectively, with more accurate reconstructed images and maps than several state-of-the-art methods. Prospective reconstruction results further demonstrate the capability of the SMART method in accelerating MR [Formula: see text] imaging.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Espectroscopia de Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos
14.
Med Phys ; 50(4): 2224-2238, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36130033

RESUMO

BACKGROUND: Magnetic resonance parameter mapping (MRPM) plays an important role in clinical applications and biomedical researches. However, the acceleration of MRPM remains a major challenge for achieving further improvements. PURPOSE: In this work, a new undersampled k-space based joint multi-contrast image reconstruction approach named CC-IC-LMEN is proposed for accelerating MR T1rho mapping. METHODS: The reconstruction formulation of the proposed CC-IC-LMEN method imposes a blockwise low-rank assumption on the characteristic-image series (c-p space) and utilizes infimal convolution (IC) to exploit and balance the generalized low-rank properties in low-and high-order c-p spaces, thereby improving the accuracy. In addition, matrix elastic-net (MEN) regularization based on the nuclear and Frobenius norms is incorporated to obtain stable and exact solutions in cases with large accelerations and noisy observations. This formulation results in a minimization problem, that can be effectively solved using a numerical algorithm based on the alternating direction method of multipliers (ADMM). Finally, T1rho maps are then generated according to the reconstructed images using nonlinear least-squares (NLSQ) curve fitting with an established relaxometry model. RESULTS: The relative l2 -norm error (RLNE) and structural similarity (SSIM) in the regions of interest (ROI) show that the CC-IC-LMEN approach is more accurate than other competing methods even in situations with heavy undersampling or noisy observation. CONCLUSIONS: Our proposed CC-IC-LMEN method provides accurate and robust solutions for accelerated MR T1rho mapping.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos , Encéfalo
15.
Phys Med Biol ; 67(21)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36174554

RESUMO

Objective. The plug-and-play prior (P3) can be flexibly coupled with multiple iterative optimizations, which has been successfully applied to the inverse problems of medical imaging. In this work, for accelerated cardiac cine magnetic resonance imaging (CC-MRI), the Spatiotemporal corrElAtion-based hyBrid plUg-and-play priorS (SEABUS) integrating a local P3and a nonlocal P3are introduced.Approach. Specifically, the local P3enforces pixelwise edge-orientation consistency by conducting reference frame guided multiscale orientation projection on a subset containing a few adjacent frames; the nonlocal P3constrains the cubewise anatomic-structure similarity by performing cube matching and 4D filtering (CM4D) on all frames. By using effectively a composite splitting algorithm (CSA), SEABUS is incorporated into a fast iterative shrinkage-thresholding algorithm and a new accelerated CC-MRI approach named SEABUS-FCSA is proposed.Main results. The experiment and algorithm analysis demonstrate the efficiency and potential of the proposed SEABUS-FCSA approach, which has the best performance in terms of reducing aliasing artifacts and capturing dynamic features in comparison with several state-of-the-art accelerated CC-MRI technologies.Significance. Our approach aims to propose a new hybrid P3based iterative algorithm, which is not only used to improve the quality of accelerated cardiac cine imaging but also extend the FCSA methodology.


Assuntos
Imagem Cinética por Ressonância Magnética , Imageamento por Ressonância Magnética , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/métodos , Artefatos , Coração/diagnóstico por imagem , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
16.
Quant Imaging Med Surg ; 11(8): 3376-3391, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341716

RESUMO

BACKGROUND: Magnetic resonance (MR) quantitative T1ρ imaging has been increasingly used to detect the early stages of osteoarthritis. The small volume and curved surface of articular cartilage necessitate imaging with high in-plane resolution and thin slices for accurate T1ρ measurement. Compared with 2D T1ρ mapping, 3D T1ρ mapping is free from artifacts caused by slice cross-talk and has a thinner slice thickness and full volume coverage. However, this technique needs to acquire multiple T1ρ-weighted images with different spin-lock times, which results in a very long scan duration. It is highly expected that the scan time can be reduced in 3D T1ρ mapping without compromising the T1ρ quantification accuracy and precision. METHODS: To accelerate the acquisition of 3D T1ρ mapping without compromising the T1ρ quantification accuracy and precision, a signal-compensated robust tensor principal component analysis method was proposed in this paper. The 3D T1ρ-weighted images compensated at different spin-lock times were decomposed as a low-rank high-order tensor plus a sparse component. Poisson-disk random undersampling patterns were applied to k-space data in the phase- and partition-encoding directions in both retrospective and prospective experiments. Five volunteers were involved in this study. The fully sampled k-space data acquired from 3 volunteers were retrospectively undersampled at R=5.2, 7.7, and 9.7, respectively. Reference values were obtained from the fully sampled data. Prospectively undersampled data for R=5 and R=7 were acquired from 2 volunteers. Bland-Altman analyses were used to assess the agreement between the accelerated and reference T1ρ measurements. The reconstruction performance was evaluated using the normalized root mean square error and the median of the normalized absolute deviation (MNAD) of the reconstructed T1ρ-weighted images and the corresponding T1ρ maps. RESULTS: T1ρ parameter maps were successfully estimated from T1ρ-weighted images reconstructed using the proposed method for all accelerations. The accelerated T1ρ measurements and reference values were in good agreement for R=5.2 (T1ρ: 40.4±1.4 ms), R=7.7 (T1ρ: 40.4±2.1 ms), and R=9.7 (T1ρ: 40.9±2.2 ms) in the Bland-Altman analyses. The T1ρ parameter maps reconstructed from the prospectively undersampled data also showed promising image quality using the proposed method. CONCLUSIONS: The proposed method achieves the 3D T1ρ mapping of in vivo knee cartilage in eight minutes using a signal-compensated robust tensor principal component analysis method in image reconstruction.

17.
Med Image Anal ; 73: 102190, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34340107

RESUMO

In dynamic magnetic resonance (MR) imaging, low-rank plus sparse (L+S) decomposition, or robust principal component analysis (PCA), has achieved stunning performance. However, the selection of the parameters of L+S is empirical, and the acceleration rate is limited, which are common failings of iterative compressed sensing MR imaging (CS-MRI) reconstruction methods. Many deep learning approaches have been proposed to address these issues, but few of them use a low-rank prior. In this paper, a model-based low-rank plus sparse network, dubbed L+S-Net, is proposed for dynamic MR reconstruction. In particular, we use an alternating linearized minimization method to solve the optimization problem with low-rank and sparse regularization. Learned soft singular value thresholding is introduced to ensure the clear separation of the L component and S component. Then, the iterative steps are unrolled into a network in which the regularization parameters are learnable. We prove that the proposed L+S-Net achieves global convergence under two standard assumptions. Experiments on retrospective and prospective cardiac cine datasets show that the proposed model outperforms state-of-the-art CS and existing deep learning methods and has great potential for extremely high acceleration factors (up to 24×).


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Análise de Componente Principal , Estudos Retrospectivos
18.
IEEE Trans Med Imaging ; 40(12): 3698-3710, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252024

RESUMO

Deep learning methods have achieved attractive performance in dynamic MR cine imaging. However, most of these methods are driven only by the sparse prior of MR images, while the important low-rank (LR) prior of dynamic MR cine images is not explored, which may limit further improvements in dynamic MR reconstruction. In this paper, a learned singular value thresholding (Learned-SVT) operator is proposed to explore low-rank priors in dynamic MR imaging to obtain improved reconstruction results. In particular, we put forward a model-based unrolling sparse and low-rank network for dynamic MR imaging, dubbed as SLR-Net. SLR-Net is defined over a deep network flow graph, which is unrolled from the iterative procedures in the iterative shrinkage-thresholding algorithm (ISTA) for optimizing a sparse and LR-based dynamic MRI model. Experimental results on a single-coil scenario show that the proposed SLR-Net can further improve the state-of-the-art compressed sensing (CS) methods and sparsity-driven deep learning-based methods with strong robustness to different undersampling patterns, both qualitatively and quantitatively. Besides, SLR-Net has been extended to a multi-coil scenario, and achieved excellent reconstruction results compared with a sparsity-driven multi-coil deep learning-based method under a high acceleration. Prospective reconstruction results on an open real-time dataset further demonstrate the capability and flexibility of the proposed method on real-time scenarios.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Estudos Prospectivos
19.
IEEE Trans Med Imaging ; 40(11): 3140-3153, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34252025

RESUMO

Magnetic resonance (MR) image reconstruction from undersampled k-space data can be formulated as a minimization problem involving data consistency and image prior. Existing deep learning (DL)-based methods for MR reconstruction employ deep networks to exploit the prior information and integrate the prior knowledge into the reconstruction under the explicit constraint of data consistency, without considering the real distribution of the noise. In this work, we propose a new DL-based approach termed Learned DC that implicitly learns the data consistency with deep networks, corresponding to the actual probability distribution of system noise. The data consistency term and the prior knowledge are both embedded in the weights of the networks, which provides an utterly implicit manner of learning reconstruction model. We evaluated the proposed approach with highly undersampled dynamic data, including the dynamic cardiac cine data with up to 24-fold acceleration and dynamic rectum data with the acceleration factor equal to the number of phases. Experimental results demonstrate the superior performance of the Learned DC both quantitatively and qualitatively than the state-of-the-art.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Coração/diagnóstico por imagem , Probabilidade
20.
J Cardiovasc Pharmacol ; 76(1): 101-105, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32304562

RESUMO

OBJECTIVES: To determine the effect of high homocysteine (HCY) levels on the severity of coronary artery disease and prognosis after stent implantation. METHODS: A prospective study was conducted on 667 patients with coronary heart disease who underwent drug-eluting stent implantation for the first time at the Department of Cardiology, Huludao Central Hospital, from January 2015 to December 2017. The patients were divided into the control and hyperhomocysteinemia (H-HCY) groups based on the serum HCY levels. The demographic and clinical characteristics of both groups were compared. In addition, the patients were followed up for 1 year to compare the incidence of major adverse cardiovascular and cerebrovascular events (MACCE). Multivariate logistic regression was used to determine the correlation between serum HCY levels and MACCE. RESULTS: Compared with the control group, the stenosis degree was significantly higher among patients in the H-Hcy group, as indicated by more coronary artery lesions (P < 0.001) and higher SYNTAX scores (P < 0.001). After 1 year of follow-up, the incidence of MACCE was also significantly higher in the H-HCY versus control group (9.5% vs. 15.1%; P = 0.042). Furthermore, age, history of diabetes, discontinuation of antiplatelet aggregation drugs, and HCY levels were independent predictors of MACCE. CONCLUSIONS: High HCY level is associated with severe coronary artery disease in patients with coronary heart disease and is an independent predictor of MACCE after stent implantation.


Assuntos
Doença da Artéria Coronariana/terapia , Stents Farmacológicos , Homocisteína/sangue , Hiper-Homocisteinemia/sangue , Intervenção Coronária Percutânea/instrumentação , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/diagnóstico por imagem , Feminino , Humanos , Hiper-Homocisteinemia/complicações , Hiper-Homocisteinemia/diagnóstico , Masculino , Pessoa de Meia-Idade , Intervenção Coronária Percutânea/efeitos adversos , Estudos Prospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...