Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(3): e202400356, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38353670

RESUMO

The senescence process is associated with accumulated oxidative damage and increased metal concentration in the heart and brain. Besides, abnormal metal-protein interactions have also been linked with the development of several conditions, including Alzheimer's and Parkinson's diseases. Over the years we have described a series of structure-related compounds with different activities towards models of such diseases. In this work, we evaluated the potential of three N-acylhydrazones (INHHQ: 8-hydroxyquinoline-2-carboxaldehyde isonicotinoyl hydrazone, HPCIH: pyridine-2-carboxaldehyde isonicotinoyl hydrazone and X1INH: 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone) to prevent oxidative stress in cellular models, with the dual intent of being active on this pathway and also to confirm their lack of cardiotoxicity as an important step in the drug development process, especially considering that the target population often presents cardiovascular comorbidity. The 8-hydroxyquinoline-contaning compound, INHHQ, exhibits a significant cardioprotective effect against hydrogen peroxide and a robust antioxidant activity. However, this compound is the most toxic to the studied cell models and seems to induce oxidative damage on its own. Interestingly, although not possessing a phenol group in its structure, the new-generation 1-methylimidazole derivative X1INH showed a cardioprotective tendency towards H9c2 cells, demonstrating the importance of attaining a compromise between activity and intrinsic cytotoxicity when developing a drug candidate.


Assuntos
Doenças Neurodegenerativas , Piridinas , Humanos , Doenças Neurodegenerativas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade , Antioxidantes/farmacologia , Estresse Oxidativo , Metais , Proteínas/metabolismo , Hidrazonas/farmacologia , Hidrazonas/química , Oxiquinolina/farmacologia
2.
Beilstein J Org Chem ; 19: 1713-1727, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025090

RESUMO

N-Acylhydrazones are a versatile class of organic compounds with a diversity of potential applications. In this study, two new structure-related 3,4,5-trimethoxybenzoyl-containing N-acylhydrazones were synthesized and fully characterized, both in solution and in the solid state. The compounds differ with respect to the carbonyl precursors, i.e., 3-substituted salicylaldehydes with either a methyl or a nitro group. Single crystals of both compounds were isolated from the respective mother liquors and, in both cases, XRD confirmed the obtention of the (E)-isomer, in an anti-conformation. Computational calculations (gas and water phases) were performed in order to confirm some of the structural and vibrational aspects of the compounds. An important intramolecular H bond involving the phenolic hydroxy group and the azomethine nitrogen was identified in the solid state and seems to be maintained in solution. Moreover, the presence of the electron-withdrawing nitro substituent makes this interaction stronger. However, the contact should probably not subsist for the nitro compound under physiological conditions since the presence of this substituent significantly affects the pKa of the phenol: an apparent value of 5.68 ± 0.02 was obtained. This also impacts the basicity of the azomethine nitrogen and, as a consequence, increases the hydrazone's susceptibility to hydrolysis. Nevertheless, both compounds are stable at physiological-like conditions, especially the methyl-derived one, which qualifies them for further toxicological and activity studies, such as those involving trivalent metal ions sequestering in the context of neurodegenerative diseases.

3.
Dalton Trans ; 52(47): 17731-17746, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37916692

RESUMO

Copper(II) complexes have become a potential alternative to the use of platinum drugs in cancer therapy due to their multi-target mode of action. In this context, we report the syntheses of new mononuclear and dinuclear coordination compounds of this element, 1 and 2, derived from the ligand 5-methylsalicylaldehyde 2-furoyl hydrazone (H2L). All three compounds were structurally and spectroscopically characterized, both in the solid state and in solution. In 1, Cu is coordinated by three donor-atoms from the hydrazonic ligand and one chloride ion. H2L is deprotonated at the phenol oxygen. The dinuclear complex 2 is, on the other hand, a dimeric form of 1 in which the chloride ions of a pair of mononuclear units are lost and phenoxo bridges take their places, double-connecting the metal centres and resulting in a single species with the ligand fully deprotonated. The compounds were fairly stable in aqueous medium at room temperature. An experimental-theoretical combined approach demonstrated that all of them are able to bind human serum albumin (HSA), although at different sites and with diverse stoichiometries and affinities (as concluded by the calculated binding energies). In view of this, and due to the well-known antiproliferative activity of hydrazone-containing copper complexes, we consider the compounds presented in here promising, and believe that they deserve more profound studies regarding the assessment of their potential against tumour cell lines.


Assuntos
Complexos de Coordenação , Albumina Sérica Humana , Humanos , Modelos Moleculares , Cobre/química , Ligantes , Cloretos , Furanos , Hidrazonas/farmacologia , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química
4.
J Inorg Biochem ; 238: 112033, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36396525

RESUMO

Alzheimer's disease (AD) is related to the presence of extracellular aggregated amyloid-ß peptide (Aß), which binds copper(II) with high affinity in its N-terminal region. In this sense, two new 1-methylimidazole-containing N-acylhydrazonic metallophores, namely, X1TMP and X1Benz, were synthesized as hydrochlorides and characterized. The compound X1TMP contains the 3,4,5-trimethoxybenzoyl moiety present in the structure of mescaline, a natural hallucinogenic protoalkaloid that occurs in some species of cacti. Single crystals of X1Benz, the unsubstituted derivative of X1TMP, were obtained. The experimental partition coefficients of both compounds were determined, as well as their apparent affinity for Cu2+ in aqueous solution. Ascorbate consumption assays showed that these N-acylhydrazones are able to lessen the production of ROS by the Cu(Aß)-system, and a short-time scale aggregation study, measured through turbidity and confirmed by TEM images, revealed their capacity in preventing Aß fibrillation at equimolar conditions in the presence and absence of copper. 1H15N HSQC NMR experiments demonstrated a direct interaction between Aß and X1Benz, the most soluble of the compounds. The Cu2+ sequestering potential of this hydrazone towards Aß was explored by 1H NMR. Although increasing amounts of X1Benz were unexpectedly not efficient at removing the metal-induced perturbations in Aß backbone amides, the broadening effects observed on the compound's signals indicate the formation of a ternary Aß­copper-X1Benz species, which can be responsible for the observed ROS-lessening and aggregation-preventing activities. Overall, the N-acylhydrazones X1TMP and X1Benz have shown promising prospects as agents for the treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Cobre/química , Mescalina , Espécies Reativas de Oxigênio/metabolismo , Peptídeos beta-Amiloides/química
6.
Inorg Chem ; 61(1): 723-737, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34918515

RESUMO

In this work, we describe two novel 1-methylimidazole N-acylhydyrazonic ligands and their interaction with copper(II) in solution. Binary systems constituted by each of these hydrazones and the metal ion were studied by potentiometric titrations. The magnitude of their affinities for zinc(II) was also determined for the sake of comparison. Additionally, a full evaluation of the copper(II) chelation profile of the new ligands in ternary systems containing a human prion protein fragment was performed. Mixed ligand complexes comprising the HuPrP103-112 fragment, copper(II) ions, and an N-acylhydrazone were characterized by potentiometry, ultraviolet-visible spectroscopy, and circular dichroism. Some of these species were also identified by electrospray ionization mass spectrometry and unequivocally assigned through their isotopic distribution pattern. To the best of our knowledge, this is the first report concerning the stability of ternary complexes involving a hydrazonic metal-protein interaction modulator, copper, and a peptide. The ability of N-acylhydrazones to prevent peptide oxidation was also examined. Both ligands can partially prevent the formation of the doubly oxidized product, a process mediated by copper(II) ions. Oxidative stress is considered an important hallmark of neurodegenerative diseases such as prion-related spongiform encephalopathies. In this context, active intervention with respect to the deleterious copper-catalyzed methionine oxidation could represent an interesting therapeutic approach.


Assuntos
Cobre
7.
Dalton Trans ; 49(45): 16252-16267, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32391542

RESUMO

Although normal aging presents an accumulation of copper and iron in the brain, this becomes more relevant in neurodegeneration. α-Synuclein (α-Syn) misfolding has long been linked with the development of Parkinson's disease (PD). Copper binding promotes aggregation of α-Syn, as well as generalized oxidative stress. In this sense, the use of therapies that target metal dyshomeostasis has been in focus in the past years. Metal-Protein Attenuating Compounds (MPACs) are moderate chelators that aim at disrupting specific, abnormal metal-protein interactions. Our research group has now established that N-acylhydrazones compose a set of truly encouraging MPACs for the bioinorganic management of metal-enhanced aggregopathies. In the present work, a novel ligand, namely 1-methyl-1H-imidazole-2-carboxaldehyde isonicotinoyl hydrazone (X1INH), is reported. We describe solution studies on the interaction and affinity of this compound for copper(ii) ions showing that a fine tuning of metal-affinity was achieved. A series of in vitro biophysical NMR experiments were performed in order to assess the X1INH ability to compete with α-Syn monomers for the binding of both copper(i) and copper(ii) ions, which are central in PD pathology. A preference for copper(i) has been observed. X1INH is less toxic to human neuroglioma (H4) cells in comparison to structure-related compounds. Finally, we show that treatment with X1INH results in a higher number of smaller, less compact inclusions in a well-established model of α-Syn aggregation. Thus, X1INH constitutes a promising MPAC for the treatment of Parkinson's disease.


Assuntos
Cobre/metabolismo , Hidrazonas/química , Hidrazonas/farmacologia , Agregados Proteicos/efeitos dos fármacos , Sinucleinopatias/metabolismo , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Linhagem Celular , Desenho de Fármacos , Humanos , Ligantes , Ligação Proteica/efeitos dos fármacos , Sinucleinopatias/patologia
8.
J Biol Inorg Chem ; 24(8): 1231-1244, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31401689

RESUMO

Misfolded prion protein (PrPSc) is known for its role in fatal neurodegenerative conditions, such as Creutzfeldt-Jakob disease. PrP fragments and their mutants represent important tools in the investigation of the neurotoxic mechanisms and in the evaluation of new compounds that can interfere with the processes involved in neuronal death. Metal-catalyzed oxidation of PrP has been implicated as a trigger for the conformational changes in protein structure, which, in turn, lead to misfolding. Targeting redox-active biometals copper and iron is relevant in the context of protection against the oxidation of biomolecules and the generation of oxidative stress, observed in several conditions and considered an event that might promote sporadic prion diseases as well as other neurodegenerative disorders. In this context, ortho-pyridine aroylhydrazones are of interest, as they can act as moderate tridentate ligands towards divalent metal ions such as copper(II). In the present work, we explore the potentiality of this chemical class as peptide protecting agents against the deleterious metal-catalyzed oxidation in the M112A mutant fragment of human PrP, which mimics relevant structural features that may play an important role in the neurotoxicity observed in prion pathologies. The compounds inhere studied, especially HPCFur, showed an improved stability in aqueous solution compared to our patented lead hydrazone INHHQ, displaying a very interesting protective effect toward the oxidation of methionine and histidine, processes that are related to both physiological and pathological aging.


Assuntos
Quelantes/química , Cobre/química , Hidrazonas/química , Proteínas Priônicas/efeitos dos fármacos , Piridinas/química , Quelantes/síntese química , Humanos , Hidrazonas/síntese química , Ligantes , Metionina/química , Mutação , Oxirredução , Proteínas Priônicas/química , Proteínas Priônicas/genética , Piridinas/síntese química
9.
J Biol Inorg Chem ; 23(8): 1227-1241, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145655

RESUMO

With the increasing life expectancy of the world's population, neurodegenerative diseases, such as Alzheimer's disease (AD), will become a much more relevant public health issue. This fact, coupled with the lack of efficacy of the available treatments, has been driving research directed to the development of new drugs for this pathology. Metal-protein attenuating compounds (MPACs) constitute a promising class of agents with potential application on the treatment of neurodegenerative diseases, such as AD. Currently, most MPACs are based on 8-hydroxyquinoline. Recently, our research group has described the hybrid aroylhydrazone containing the 8-hydroxyquinoline group INHHQ as a promising MPAC. By studying the known structure-related ligand HPCIH, which does not contain the phenol moiety, as a simplified chemical model for INHHQ, we aimed to clarify the real impact of the aroylhydrazone group for the MPAC activity of a compound with potential anti-Alzheimer's activity. The present work describes a detailed solution and solid-state study of the coordination of HPCIH with Zn2+ ions, as well as its in vitro binding-ability towards this metal in the presence of the Aß(1-40) peptide. Similar to INHHQ, HPCIH is able to efficiently compete with Aß(1-40) for Zn2+ ions, performing as expected for an MPAC. The similarity between the behaviors of both ligands is remarkable. Taken together, the data presented herein point to aroylhydrazones, such as the compounds HPCIH and the previously published INHHQ, as encouraging MPACs for the treatment of AD.


Assuntos
Hidrazonas/química , Nootrópicos/química , Piridinas/química , Zinco/química , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Complexos de Coordenação/metabolismo , Hidrazonas/síntese química , Hidrazonas/metabolismo , Ligantes , Estrutura Molecular , Nootrópicos/síntese química , Nootrópicos/metabolismo , Fragmentos de Peptídeos/metabolismo , Estudo de Prova de Conceito , Ligação Proteica , Piridinas/síntese química , Piridinas/metabolismo , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...