Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 8347, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827645

RESUMO

The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-µm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~1020 W/cm2. The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

2.
Phys Rev E ; 93: 043201, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27176413

RESUMO

An analysis of an electron spectrometer used to characterize fast electrons generated by ultraintense (10^{20}Wcm^{-2}) laser interaction with a preformed plasma of scale length measured by shadowgraphy is presented. The effects of fringing magnetic fields on the electron spectral measurements and the accuracy of density scale-length measurements are evaluated. 2D EPOCH PIC code simulations are found to be in agreement with measurements of the electron energy spectra showing that laser filamentation in plasma preformed by a prepulse is important with longer plasma scale lengths (>8 µm).

3.
Phys Rev Lett ; 110(12): 125001, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166812

RESUMO

In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...