Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
J Am Chem Soc ; 146(18): 12601-12608, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38687243

RESUMO

The burgeoning necessity to discover new methodologies for the synthesis of long-chain hydrocarbons and oxygenates, independent of traditional reliance on high-temperature, high-pressure, and fossil fuel-based carbon, is increasingly urgent. In this context, we introduce a nonthermal plasma-based strategy for the initiation and propagation of long-chain carbon growth from biogas constituents (CO2 and CH4). Utilizing a plasma reactor operating at atmospheric room temperature, our approach facilitates hydrocarbon chain growth up to C40 in the solid state (including oxygenated products), predominantly when CH4 exceeds CO2 in the feedstock. This synthesis is driven by the hydrogenation of CO2 and/or amalgamation of CHx radicals. Global plasma chemistry modeling underscores the pivotal role of electron temperature and CHx radical genesis, contingent upon varying CO2/CH4 ratios in the plasma system. Concomitant with long-chain hydrocarbon production, the system also yields gaseous products, primarily syngas (H2 and CO), as well as liquid-phase alcohols and acids. Our finding demonstrates the feasibility of atmospheric room-temperature synthesis of long-chain hydrocarbons, with the potential for tuning the chain length based on the feed gas composition.

2.
Foods ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540814

RESUMO

Fresh blueberries are delicate, hand-picked, packaged, and refrigerated fruits vulnerable to spoilage and contamination. Cold atmospheric plasma (CAP) is a promising antimicrobial technology; therefore, this study evaluated the CAP treatment effect on acid-tolerant Listeria innocua and Listeria monocytogenes and evaluated changes in the quality of the treated fruit. Samples were spot-inoculated with pH 5.5 and 6.0 acid-adapted Listeria species. Samples were treated with gliding arc CAP for 15, 30, 45, and 60 s and evaluated after 0, 1, 4, 7, and 11 days of storage at 4 °C and 90% humidity for the following quality parameters: total aerobic counts, yeast and molds, texture, color, soluble solids, pH, and titratable acidity. CAP treatments of 30 s and over demonstrated significant reductions in pathogens under both the resistant strain and pH conditions. Sixty-second CAP achieved a 0.54 Log CFU g-1 reduction in L. monocytogenes (pH 5.5) and 0.28 Log CFU g-1 for L. monocytogenes (pH 6.0). Yeast and mold counts on day 0 showed statistically significant reductions after 30, 45, and 60 s CAP with an average 2.34 Log CFU g-1 reduction when compared to non-CAP treated samples. Quality parameters did not show major significant differences among CAP treatments during shelf life. CAP is an effective antimicrobial treatment that does not significantly affect fruit quality.

3.
ChemSusChem ; 17(6): e202300783, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-37994281

RESUMO

Ammonia plays a crucial role in industry and agriculture worldwide, but traditional industrial ammonia production methods are energy-intensive and negatively impact the environment. Ammonia synthesis using low-temperature plasma technology has gained traction in the pursuit of environment-benign and cost-effective methods for producing green ammonia. This Review discusses the recent advances in low-temperature plasma-assisted ammonia synthesis, focusing on three main routes: N2+H2 plasma-only, N2+H2O plasma-only, and plasma coupled with other technologies. The reaction pathways involved in the plasma-assisted ammonia synthesis, as well as the process parameters, including the optimum catalyst types and discharge schemes, are examined. Building upon the current research status, the challenges and research opportunities in the plasma-assisted ammonia synthesis processes are outlined. The article concludes with the outlook for the future development of the plasma-assisted ammonia synthesis technology in real-life industrial applications.

4.
J Am Chem Soc ; 145(51): 28233-28239, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38103175

RESUMO

By inducing CO2-pulsed discharges within microchannel bubbles and regulating thus-forming plasma microbubbles, we observe high-performance, catalyst-free coformation of hydrogen peroxide (H2O2) and oxalate directly from CO2 and water. With isotope-labeled C18O2 as the feedstock, peaks of H218O16O and H216O2 observed by ex situ surface-enhanced Raman spectra indicate that single-atom oxygen (O) from CO2 dissociations and H2O-derived OH radicals both contribute to H2O2 formation. The global plasma chemistry modeling suggests that high-density, energy-intense electron supply enables high-density CO2- (aq) and HCO2- (aq) formation and their subsequent coupling to produce oxalate. The enhanced solvation of CO2, facilitated by the efficient transport of CxOy ionic species and CO, is demonstrated as a crucial benefit of spark discharges interacting with water at the bubble interface. We expect this plasma microbubble approach to provide a novel power-to-chemical avenue to convert CO2 into valuable H2O2 and oxalic acid platform chemicals, thus leveraging renewable energy resources.

5.
Mol Ther Nucleic Acids ; 34: 102057, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37928442

RESUMO

Toxic gain-of-function mutations in superoxide dismutase 1 (SOD1) contribute to approximately 2%-3% of all amyotrophic lateral sclerosis (ALS) cases. Artificial microRNAs (amiRs) delivered by adeno-associated virus (AAV) have been proposed as a potential treatment option to silence SOD1 expression and mitigate disease progression. Primary microRNA (pri-miRNA) scaffolds are used in amiRs to shuttle a hairpin RNA into the endogenous miRNA pathway, but it is unclear whether different primary miRNA (pri-miRNA) scaffolds impact the potency and safety profile of the expressed amiR in vivo. In our process to develop an AAV amiR targeting SOD1, we performed a preclinical characterization of two pri-miRNA scaffolds, miR155 and miR30a, sharing the same guide strand sequence. We report that, while the miR155-based vector, compared with the miR30a-based vector, leads to a higher level of the amiR and more robust suppression of SOD1 in vitro and in vivo, it also presents significantly greater risks for CNS-related toxicities in vivo. Despite miR30a-based vector showing relatively lower potency, it can significantly delay the development of ALS-like phenotypes in SOD1-G93A mice and increase survival in a dose-dependent manner. These data highlight the importance of scaffold selection in the pursuit of highly efficacious and safe amiRs for RNA interference gene therapy.

6.
Biofilm ; 6: 100154, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37771391

RESUMO

Healing and treatment of chronic wounds are often complicated due to biofilm formation by pathogens. Here, the efficacy of plasma activated water (PAW) as a pre-treatment strategy has been investigated prior to the application of topical antiseptics polyhexamethylene biguanide, povidone iodine, and MediHoney, which are routinely used to treat chronic wounds. The efficacy of this treatment strategy was determined against biofilms of Escherichia coli formed on a plastic substratum and on a human keratinocyte monolayer substratum used as an in vitro biofilm-skin epithelial cell model. PAW pre-treatment greatly increased the killing efficacy of all the three antiseptics to eradicate the E. coli biofilms formed on the plastic and keratinocyte substrates. However, the efficacy of the combined PAW-antiseptic treatment and single treatments using PAW or antiseptic alone was lower for biofilms formed in the in vitro biofilm-skin epithelial cell model compared to the plastic substratum. Scavenging assays demonstrated that reactive species present within the PAW were largely responsible for its anti-biofilm activity. PAW treatment resulted in significant intracellular reactive oxygen and nitrogen species accumulation within the E. coli biofilms, while also rapidly acting on the microbial membrane leading to outer membrane permeabilisation and depolarisation. Together, these factors contribute to significant cell death, potentiating the antibacterial effect of the assessed antiseptics.

7.
Microbiol Spectr ; 11(4): e0003423, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37428084

RESUMO

The effect of plasma-activated water (PAW) generated with a dielectric barrier discharge diffusor (DBDD) system on microbial load and organoleptic quality of cucamelons was investigated and compared to the established sanitizer, sodium hypochlorite (NaOCl). Pathogenic serotypes of Escherichia coli, Salmonella enterica, and Listeria monocytogenes were inoculated onto the surface of cucamelons (6.5 log CFU g-1) and into the wash water (6 log CFU mL-1). PAW treatment involved 2 min in situ with water activated at 1,500 Hz and 120 V and air as the feed gas; NaOCl treatment was a wash with 100 ppm total chlorine; control treatment was a wash with tap water. PAW treatment produced a 3-log CFU g-1 reduction of pathogens on the cucamelon surface without negatively impacting quality or shelf life. NaOCl treatment reduced the pathogenic bacteria on the cucamelon surface by 3 to 4 log CFU g-1; however, this treatment also reduced fruit shelf life and quality. Both systems reduced 6-log CFU mL-1 pathogens in the wash water to below detectable limits. The critical role of superoxide anion radical (·O2-) in the antimicrobial power of DBDD-PAW was demonstrated through a Tiron scavenger assay, and chemistry modeling confirmed that ·O2- generation readily occurs in DBDD-PAW generated with the employed settings. Modeling of the physical forces produced during plasma treatment showed that bacteria likely experience strong local electric fields and polarization. We hypothesize that these physical effects synergize with reactive chemical species to produce the acute antimicrobial activity seen with the in situ PAW system. IMPORTANCE Plasma-activated water (PAW) is an emerging sanitizer in the fresh food industry, where food safety must be achieved without a thermal kill step. Here, we demonstrate PAW generated in situ to be a competitive sanitizer technology, providing a significant reduction of pathogenic and spoilage microorganisms while maintaining the quality and shelf life of the produce item. Our experimental results are supported by modeling of the plasma chemistry and applied physical forces, which show that the system can generate highly reactive ·O2- and strong electric fields that combine to produce potent antimicrobial power. In situ PAW has promise in industrial applications as it requires only low power (12 W), tap water, and air. Moreover, it does not produce toxic by-products or hazardous effluent waste, making it a sustainable solution for fresh food safety.


Assuntos
Anti-Infecciosos , Desinfetantes , Salmonella enterica , Microbiologia de Alimentos , Frutas/microbiologia , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Desinfetantes/farmacologia
8.
Foods ; 12(9)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37174301

RESUMO

A novel food processing technique based on the combination of cold atmospheric plasma (CAP) and chitosan oligosaccharide treatment (COS) was developed to enhance antibacterial performance and extend the shelf life of Pacific white shrimp (Litopenaeus vannamei). Effects of different treatments on the microbial community composition, physicochemical properties, and post-storage behaviors of Pacific white shrimp were evaluated during chilled storage for up to 10 days. Results showed that the synergistic effects of COS and CAP could be obtained, largely inhibiting the growth of microorganisms. The content of total volatile basic nitrogen (TVB-N), total viable counts (TVC), and pH value in treated groups were lower than in the control group and the loss of moisture content, water activity, and sensory score were observed. Compared to the control group, shrimp was on the verge of spoilage on the 6th day of storage, while the COS-CAP-treated shrimp had a 4-day lag period. Moreover, the COS and CAP could effectively inhibit the growth of Aliivibrio, the predominant microbial group in the ultimate storage period. This study suggests that the combined utilization of COS and CAP could be a high-efficacy technique for extending the shelf-life of shrimp.

9.
Food Chem ; 421: 136201, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37105117

RESUMO

Natural essential oils (EOs), especially those combining different individual EOs (also termed composite EOs) with enhanced performance, are becoming healthy, market-sought food preservatives/additives. This study aims to provide insights into the challenge regarding EOs processing due to their low solubility and the elusive mechanism under the enhanced bio-reactivity of composite EOs. A unique oil/water interacting network was created by phase-inversion processing, which enhances EO solubilization and emulsification to form composite EO formulations (EOFs) containing ordinary cinnamon, oregano and clove EOs. These EOFs mainly contained cinnamaldehyde, carvacrol and eugenol and exhibited excellent post-storage stability. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging ability of EOFs (at 15.880 µL/mL) was > 88%, and the Ferric reducing antioxidant power (FRAP) was 1.8 mM FeSO4·7H2O. The minimum inhibitory concentration (MIC) of EOFs against E. coli and S. aureus was ∼7.940 µL/mL. The EOFs could cause quick deterioration of bacterial structures, demonstrating high efficacy in bacteria-killing and anti-biofilm formation.


Assuntos
Óleos Voláteis , Origanum , Syzygium , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Origanum/química , Cinnamomum zeylanicum/química , Staphylococcus aureus , Emulsões , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
10.
ACS Nano ; 17(6): 5163-5186, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36926849

RESUMO

The growing interest in the development of next-generation net zero energy systems has led to the expansion of molybdenum disulfide (MoS2) research in this area. This activity has resulted in a wide range of manufacturing/synthesis methods, controllable morphologies, diverse carbonaceous composite structures, a multitude of applicable characterization techniques, and multiple energy applications for MoS2. To assess the literature trends, 37,347 MoS2 research articles from Web of Science were text scanned to classify articles according to energy application research and characterization techniques employed. Within the review, characterization techniques are grouped under the following categories: morphology, crystal structure, composition, and chemistry. The most common characterization techniques identified through text scanning are recommended as the base fingerprint for MoS2 samples. These include: scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Similarly, XPS and Raman spectroscopy are suggested for 2H or 1T MoS2 phase confirmation. We provide guidance on the collection and presentation of MoS2 characterization data. This includes how to effectively combine multiple characterization techniques, considering the sample area probed by each technique and their statistical significance, and the benefit of using reference samples. For ease of access for future experimental comparison, key numeric MoS2 characterization values are tabulated and major literature discrepancies or currently debated characterization disputes are highlighted.

11.
Meat Sci ; 200: 109165, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36958246

RESUMO

The use of plasma-activated water (PAW) as an antimicrobial agent to inactivate Salmonella Typhimurium on chilled beef during meat washing was evaluated. Two meat washing methods, spraying and immersion, were evaluated at contact times of 15, 30 and 60 s and meat storage times of 0, 1 and 7 days. The temperature of PAW was elevated to 55 °C for washing as it increased the microbial inactivation compared to ambient temperature. At the contact time of 60 s and meat storage time of 7 days, PAW spraying and immersion achieved 0.737-log10 and 0.710-log10 reductions against Salmonella Typhimurium, respectively; there were no significant differences between both washing methods, with spraying being preferred for commercial implementation. Compared to untreated and water-treated samples, meat washing with PAW alone improved the S. Typhimurium inactivation and did not cause negative impacts on the lightness and hue angle values, TBARS value, water holding capacity and pH. However, PAW reduced the redness, yellowness and chroma values with the decreased oxymyoglobin values of 44.1% at the storage time of 1 day. PAW spraying at 55 °C followed by additional water washing at 25 °C for 60 s achieved 0.696-log10 reduction and mitigated a reduction in (i) the redness value, from 11.3 to 18.2, (ii) the yellowness value, from 9.19 to 11.1, and (iii) the chroma value, from 14.5 to 21.3, without displaying colour differences (∆E), as detected by human eyes, compared to water-treated samples. Moreover, the content of myoglobin forms was maintained by additional water washing.


Assuntos
Anti-Infecciosos , Água , Animais , Bovinos , Humanos , Água/química , Imersão , Carne , Temperatura , Contagem de Colônia Microbiana , Microbiologia de Alimentos
12.
PLoS One ; 18(2): e0276248, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36753513

RESUMO

Three-dimensional (3D) cell culture models can help bridge the gap between in vitro cell cultures and in vivo responses by more accurately simulating the natural in vivo environment, shape, tissue stiffness, stressors, gradients and cellular response while avoiding the costs and ethical concerns associated with animal models. The inclusion of the third dimension in 3D cell culture influences the spatial organization of cell surface receptors that interact with other cells and imposes physical restrictions on cells in compared to Two-dimensional (2D) cell cultures. Spheroids' distinctive cyto-architecture mimics in vivo cellular structure, gene expression, metabolism, proliferation, oxygenation, nutrition absorption, waste excretion, and drug uptake while preserving cell-extracellular matrix (ECM) connections and communication, hence influencing molecular processes and cellular phenotypes. This protocol describes the in vitro generation of tumourspheroids using the low attachment plate, hanging drop plate, and cellusponge natural scaffold based methods. The expected results from these protocols confirmed the ability of all these methods to create uniform tumourspheres.


Assuntos
Glioblastoma , Animais , Glioblastoma/metabolismo , Técnicas de Cultura de Células/métodos , Esferoides Celulares , Matriz Extracelular/metabolismo
13.
Nat Commun ; 14(1): 818, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781856

RESUMO

Metal-free electrocatalysts represent a main branch of active materials for oxygen evolution reaction (OER), but they excessively rely on functionalized conjugated carbon materials, which substantially restricts the screening of potential efficient carbonaceous electrocatalysts. Herein, we demonstrate that a mesostructured polyacrylate hydrogel can afford an unexpected and exceptional OER activity - on par with that of benchmark IrO2 catalyst in alkaline electrolyte, together with a high durability and good adaptability in various pH environments. Combined theoretical and electrokinetic studies reveal that the positively charged carbon atoms within the carboxylate units are intrinsically active toward OER, and spectroscopic operando characterizations also identify the fingerprint superoxide intermediate generated on the polymeric hydrogel backbone. This work expands the scope of metal-free materials for OER by providing a new class of polymeric hydrogel electrocatalysts with huge extension potentials.

14.
Carbohydr Polym ; 305: 120550, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36737199

RESUMO

Inulin is a prebiotic carbohydrate widely used in food industry due to its health benefits and unique rheological properties. For the first time, this study explores the potential of natural inulin as a sustainable food additive to enhance surimi gel characteristics, specifically focusing on understanding its molecular weight effects. The good solubility of inulin facilitates the conversion of α-helix to other secondary conformations which are favorable for protein denaturation and aggregation during gelation. Moreover, the abundant -OH groups at the surface of inulin can boost the chemical forces within surimi proteins to reinforce the gel network. Compared to short-chain inulin, long-chain inulin can alleviate proteolysis, enhance hydrophobic interactions and intertwine with myosin molecules, thereby reinforcing the gel network. A more viscous long-chain inulin solution formed within surimi gels fills the space between aggregated proteins and facilitates the lock of water molecules, improving the water-holding capacity (WHC). Thus, an addition of 12 % long-chain inulin leads to an enhanced hardness of surimi gel from 943 to 1593 and improved WHC from 72 % to 85 %. A new inulin-myosin interaction mechanism model is also proposed to provide useful guidelines for surimi processing and expanding the application of inulin within the food industries.


Assuntos
Produtos Pesqueiros , Inulina , Peso Molecular , Produtos Pesqueiros/análise , Géis/química , Manipulação de Alimentos , Miosinas , Água
15.
Bioorg Med Chem Lett ; 80: 129108, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36538993

RESUMO

For the past two decades, BTK a tyrosine kinase and member of the Tec family has been a drug target of significant interest due to its potential to selectively treat various B cell-mediated diseases such as CLL, MCL, RA, and MS. Owning to the challenges encountered in identifying drug candidates exhibiting the potency block B cell activation via BTK inhibition, the pharmaceutical industry has relied on the use of covalent/irreversible inhibitors to address this unmet medical need. Herein, we describe a medicinal chemistry campaign to identify structurally diverse reversible BTK inhibitors originating from HITS identified using a fragment base screen. The leads were optimized to improve the potency and in vivo ADME properties resulting in a structurally distinct chemical series used to develop and validate a novel in vivo CD69 and CD86 PD assay in rodents.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Camundongos , Animais , Tirosina Quinase da Agamaglobulinemia , Inibidores de Proteínas Quinases/química , Modelos Animais de Doenças , Antígeno B7-2
16.
Bioresour Technol ; 369: 128370, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36423765

RESUMO

Astaxanthin is used extensively in the nutraceutical, aquaculture, and cosmetic industries. The current market necessitates higher astaxanthin production from Phaffia rhodozyma (P. rhodozyma) due to its higher cost compared to chemical synthesis. In this study, a bubble discharge reactor was developed to generate plasma-activated water (PAW) to produce PAW-made yeast malt (YM) medium. Due to oxidative stress induced by PAW, strains cultured in 15 and 30 min-treated PAW-made medium produced 7.9 ± 1.2 % and 12.6 ± 1.4 % more carotenoids with 15.5 ± 3.3 % and 22.1 ± 1.3 % more astaxanthin, respectively. Reactive oxygen species (ROS) assay results showed that ROS generated by plasma-water interactions elevated intracellular ROS levels. Proteomic analysis revealed increased expression of proteins involved in the cellular response to oxidative stress as well as carotenoid biosynthesis, both of which contribute to higher yields of astaxanthin. Overall, this study supports the potential of PAW to increase astaxanthin yields for industrial-scale production.


Assuntos
Basidiomycota , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Basidiomycota/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae
17.
Gene Ther ; 30(5): 443-454, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36450833

RESUMO

CRISPR-based gene editing technology represents a promising approach to deliver therapies for inherited disorders, including amyotrophic lateral sclerosis (ALS). Toxic gain-of-function superoxide dismutase 1 (SOD1) mutations are responsible for ~20% of familial ALS cases. Thus, current clinical strategies to treat SOD1-ALS are designed to lower SOD1 levels. Here, we utilized AAV-PHP.B variants to deliver CRISPR-Cas9 guide RNAs designed to disrupt the human SOD1 (huSOD1) transgene in SOD1G93A mice. A one-time intracerebroventricular injection of AAV.PHP.B-huSOD1-sgRNA into neonatal H11Cas9 SOD1G93A mice caused robust and sustained mutant huSOD1 protein reduction in the cortex and spinal cord, and restored motor function. Neonatal treatment also reduced spinal motor neuron loss, denervation at neuromuscular junction (NMJ) and muscle atrophy, diminished axonal damage and preserved compound muscle action potential throughout the lifespan of treated mice. SOD1G93A treated mice achieved significant disease-free survival, extending lifespan by more than 110 days. Importantly, a one-time intrathecal or intravenous injection of AAV.PHP.eB-huSOD1-sgRNA in adult H11Cas9 SOD1G93A mice, immediately before symptom onset, also extended lifespan by at least 170 days. We observed substantial protection against disease progression, demonstrating the utility of our CRISPR editing preclinical approach for target evaluation. Our approach uncovered key parameters (e.g., AAV capsid, Cas9 expression) that resulted in improved efficacy compared to similar approaches and can also serve to accelerate drug target validation.


Assuntos
Esclerose Lateral Amiotrófica , Camundongos , Humanos , Animais , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/terapia , Superóxido Dismutase-1/genética , Edição de Genes , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças
18.
Drug Discov Today ; 28(2): 103426, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36332834

RESUMO

This review focuses on recent advances in 3D culture systems that promise more accurate therapeutic models of the glioblastoma multiforme (GBM) tumor microenvironment (TME), such as the unique anatomical, cellular, and molecular features evident in human GBM. The key components of a GBM TME are outlined, including microbiomes, vasculature, extracellular matrix (ECM), infiltrating parenchymal and peripheral immune cells and molecules, and chemical gradients. 3D culture systems are evaluated against 2D culture systems and in vivo animal models. The main 3D culture techniques available are compared, with an emphasis on identifying key gaps in knowledge for the development of suitable platforms to accurately model the intricate components of the GBM TME.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Humanos , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Microambiente Tumoral
19.
Polymers (Basel) ; 14(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36235973

RESUMO

Cellulose is the most abundant biopolymer on Earth, which is synthesized by plants, bacteria, and animals, with source-dependent properties. Cellulose containing ß-1,4-linked D-glucoses further assembles into hierarchical structures in microfibrils, which can be processed to nanocellulose with length or width in the nanoscale after a variety of pretreatments including enzymatic hydrolysis, TEMPO-oxidation, and carboxymethylation. Nanocellulose can be mainly categorized into cellulose nanocrystal (CNC) produced by acid hydrolysis, cellulose nanofibrils (CNF) prepared by refining, homogenization, microfluidization, sonification, ball milling, and the aqueous counter collision (ACC) method, and bacterial cellulose (BC) biosynthesized by the Acetobacter species. Due to nontoxicity, good biodegradability and biocompatibility, high aspect ratio, low thermal expansion coefficient, excellent mechanical strength, and unique optical properties, nanocellulose is utilized to develop various cellulose nanocomposites through solution casting, Layer-by-Layer (LBL) assembly, extrusion, coating, gel-forming, spray drying, electrostatic spinning, adsorption, nanoemulsion, and other techniques, and has been widely used as food packaging material with excellent barrier and mechanical properties, antibacterial activity, and stimuli-responsive performance to improve the food quality and shelf life. Under the driving force of the increasing green food packaging market, nanocellulose production has gradually developed from lab-scale to pilot- or even industrial-scale, mainly in Europe, Africa, and Asia, though developing cost-effective preparation techniques and precisely tuning the physicochemical properties are key to the commercialization. We expect this review to summarise the recent literature in the nanocellulose-based food packaging field and provide the readers with the state-of-the-art of this research area.

20.
Sci Rep ; 12(1): 17394, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253414

RESUMO

Induced pluripotent stem cell (iPSC) derived cell types are increasingly employed as in vitro model systems for drug discovery. For these studies to be meaningful, it is important to understand the reproducibility of the iPSC-derived cultures and their similarity to equivalent endogenous cell types. Single-cell and single-nucleus RNA sequencing (RNA-seq) are useful to gain such understanding, but they are expensive and time consuming, while bulk RNA-seq data can be generated quicker and at lower cost. In silico cell type decomposition is an efficient, inexpensive, and convenient alternative that can leverage bulk RNA-seq to derive more fine-grained information about these cultures. We developed CellMap, a computational tool that derives cell type profiles from publicly available single-cell and single-nucleus datasets to infer cell types in bulk RNA-seq data from iPSC-derived cell lines.


Assuntos
Células-Tronco Pluripotentes Induzidas , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...