Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 36(10): e4989, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37336778

RESUMO

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths. Imaging plays a crucial role in the early detection of HCC, although current methods are limited in their ability to characterize liver lesions. Most recently, deuterium metabolic imaging (DMI) has been demonstrated as a powerful technique for the imaging of metabolism in vivo. Here, we assess the metabolic flux of [6,6'-2 H2 ] fructose in cell cultures and in subcutaneous mouse models at 9.4 T. We compare these rates with the most widely used DMI probe, [6,6'-2 H2 ] glucose, exploring the possibility of developing 2 H fructose to overcome the limitations of glucose as a novel DMI probe for detecting liver tumors. Comparison of the in vitro metabolic rates implies their similar glycolytic metabolism in the TCA cycle due to comparable production rates of 2 H glutamate/glutamine (glx) for the two precursors, but overall higher glycolytic metabolism from 2 H glucose because of a higher production rate of 2 H lactate. In vivo kinetic studies suggest that HDO can serve as a robust reporter for the consumption of the precursors in liver tumors. As fructose is predominantly metabolized in the liver, deuterated water (HDO) produced from 2 H fructose is probably less contaminated from whole-body metabolism in comparison with glucose. Moreover, in studies of the normal liver, 2 H fructose is readily converted to 2 H glx, enabling the characterization of 2 H fructose kinetics. This overcomes a major limitation of previous 2 H glucose studies in the liver, which were unable to confidently discern metabolic flux due to overlapped signals of 2 H glucose and its metabolic product, 2 H glycogen. This suggests a unique role for 2 H fructose metabolism in HCC and the normal liver, making it a useful approach for assessing liver-related diseases and the progression to oncogenesis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/metabolismo , Deutério/metabolismo , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/metabolismo , Cinética , Frutose/metabolismo , Glucose/metabolismo , Fígado/diagnóstico por imagem , Fígado/metabolismo , Ácido Láctico/metabolismo
2.
Sci Adv ; 8(14): eabm7985, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35385296

RESUMO

The ability to break down fructose is dependent on ketohexokinase (KHK) that phosphorylates fructose to fructose-1-phosphate (F1P). We show that KHK expression is tightly controlled and limited to a small number of organs and is down-regulated in liver and intestinal cancer cells. Loss of fructose metabolism is also apparent in hepatocellular adenoma and carcinoma (HCC) patient samples. KHK overexpression in liver cancer cells results in decreased fructose flux through glycolysis. We then developed a strategy to detect this metabolic switch in vivo using hyperpolarized magnetic resonance spectroscopy. Uniformly deuterating [2-13C]-fructose and dissolving in D2O increased its spin-lattice relaxation time (T1) fivefold, enabling detection of F1P and its loss in models of HCC. In summary, we posit that in the liver, fructolysis to F1P is lost in the development of cancer and can be used as a biomarker of tissue function in the clinic using metabolic imaging.

3.
Sci Adv ; 7(47): eabj0852, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34797711

RESUMO

Conventional molecular recognition elements, such as antibodies, present issues for developing biomolecular assays for use in certain technologies, such as implantable devices. Additionally, antibody development and use, especially for highly multiplexed applications, can be slow and costly. We developed a perception-based platform based on an optical nanosensor array that leverages machine learning algorithms to detect multiple protein biomarkers in biofluids. We demonstrated this platform in gynecologic cancers, often diagnosed at advanced stages, leading to low survival rates. We investigated the detection of protein biomarkers in uterine lavage samples, which are enriched with certain cancer markers compared to blood. We found that the method enables the simultaneous detection of multiple biomarkers in patient samples, with F1-scores of ~0.95 in uterine lavage samples from patients with cancer. This work demonstrates the potential of perception-based systems for the development of multiplexed sensors of disease biomarkers without the need for specific molecular recognition elements.

4.
Cancer Res ; 81(13): 3444-3445, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252040

RESUMO

Immune checkpoint blockade therapy has achieved remarkable clinical success, but these promising results have been limited to a minority of patients. Thus far, efforts to establish a predictive biomarker or accurately assess early response to treatment have been fruitless. In this issue of Cancer Research, Saida and colleagues utilized advanced molecular imaging modalities to assess changes in the tumor microenvironment that correlate with tumor response to immune checkpoint blockade therapy in vivo This study suggests a combination of imaging biomarkers with potential for delineating clinical response to immunotherapy.See related article by Saida et al., p. 3693.


Assuntos
Imunoterapia , Neoplasias , Biomarcadores , Humanos , Fatores Imunológicos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Microambiente Tumoral
5.
PLoS Pathog ; 14(5): e1007057, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775485

RESUMO

Within the liver a single Plasmodium parasite transforms into thousands of blood-infective forms to cause malaria. Here, we use RNA-sequencing to identify host genes that are upregulated upon Plasmodium berghei infection of hepatocytes with the hypothesis that host pathways are hijacked to benefit parasite development. We found that expression of aquaporin-3 (AQP3), a water and glycerol channel, is significantly induced in Plasmodium-infected hepatocytes compared to uninfected cells. This aquaglyceroporin localizes to the parasitophorous vacuole membrane, the compartmental interface between the host and pathogen, with a temporal pattern that correlates with the parasite's expansion in the liver. Depletion or elimination of host AQP3 expression significantly reduces P. berghei parasite burden during the liver stage and chemical disruption by a known AQP3 inhibitor, auphen, reduces P. falciparum asexual blood stage and P. berghei liver stage parasite load. Further use of this inhibitor as a chemical probe suggests that AQP3-mediated nutrient transport is an important function for parasite development. This study reveals a previously unknown potential route for host-dependent nutrient acquisition by Plasmodium which was discovered by mapping the transcriptional changes that occur in hepatocytes throughout P. berghei infection. The dataset reported may be leveraged to identify additional host factors that are essential for Plasmodium liver stage infection and highlights Plasmodium's dependence on host factors within hepatocytes.


Assuntos
Aquaporina 3/metabolismo , Plasmodium berghei/metabolismo , Animais , Aquaporina 3/fisiologia , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/parasitologia , Humanos , Fígado/metabolismo , Fígado/parasitologia , Hepatopatias , Malária/parasitologia , Camundongos , Parasitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/parasitologia , Proteínas de Protozoários/metabolismo , Análise de Sequência de RNA/métodos , Esporozoítos/metabolismo , Vacúolos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...