Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 3(1): 105, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752298

RESUMO

Arctic climate change is leading to sea-ice attrition in the Last Ice Area along the northern coast of Canada and Greenland, but less attention has been given to the associated land-based ecosystems. Here we evaluated bacterial community structure in a hydrologically coupled cryo-ecosystem in the region: Thores Glacier, proglacial Thores Lake, and its outlet to the sea. Deep amplicon sequencing revealed that Polaromonas was ubiquitous, but differed genetically among diverse niches. Surface glacier-ice was dominated by Cyanobacteria, while the perennially ice-capped, well-mixed water column of Thores Lake had a unique assemblage of Chloroflexi, Actinobacteriota, and Planctomycetota. Species richness increased downstream, but glacier microbes were little detected in the lake, suggesting strong taxonomic sorting. Ongoing climate change and the retreat of Thores Glacier would lead to complete drainage and loss of the lake microbial ecosystem, indicating the extreme vulnerability of diverse cryohabitats and unique microbiomes in the Last Ice coastal margin.

2.
Microorganisms ; 11(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36838393

RESUMO

Thermokarst lakes are important features of subarctic landscapes and are a substantial source of greenhouse gases, although the extent of gas produced varies seasonally. Microbial communities are responsible for the production of methane and CO2 but the "top down" forces that influence microbial dynamics (i.e., grazers and viruses) and how they vary temporally within these lakes are still poorly understood. The aim of this study was to examine viral diversity over time to elucidate the seasonal structure of the viral communities in thermokarst lakes. We produced virus-enriched metagenomes from a subarctic peatland thermokarst lake in the summer and winter over three years. The vast majority of vOTUs assigned to viral families belonged to Caudovirales (Caudoviricetes), notably the morphological groups myovirus, siphovirus and podovirus. We identified two distinct communities: a dynamic, seasonal community in the oxygenated surface layer during the summer and a stable community found in the anoxic water layer at the bottom of the lake in summer and throughout much of the water column in winter. Comparison with other permafrost and northern lake metagenomes highlighted the distinct composition of viral communities in this permafrost thaw lake ecosystem.

4.
Appl Environ Microbiol ; 88(17): e0022822, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36005820

RESUMO

Milne Fiord, located on the coastal margin of the Last Ice Area (LIA) in the High Arctic (82°N, Canada), harbors an epishelf lake, a rare type of ice-dependent ecosystem in which a layer of freshwater overlies marine water connected to the open ocean. This microbe-dominated ecosystem faces catastrophic change due to the deterioration of its ice environment related to warming temperatures. We produced the first assessment of viral abundance, diversity, and distribution in this vulnerable ecosystem and explored the niches available for viral taxa and the functional genes underlying their distribution. We found that the viral community in the freshwater layer was distinct from, and more diverse than, the community in the underlying seawater and contained a different set of putative auxiliary metabolic genes, including the sulfur starvation-linked gene tauD and the gene coding for patatin-like phospholipase. The halocline community resembled the freshwater more than the marine community, but harbored viral taxa unique to this layer. We observed distinct viral assemblages immediately below the halocline, at a depth that was associated with a peak of prasinophyte algae and the viral family Phycodnaviridae. We also assembled 15 complete circular genomes, including a putative Pelagibacter phage with a marine distribution. It appears that despite its isolated and precarious situation, the varied niches in this epishelf lake support a diverse viral community, highlighting the importance of characterizing underexplored microbiota in the Last Ice Area before these ecosystems undergo irreversible change. IMPORTANCE Viruses are key to understanding polar aquatic ecosystems, which are dominated by microorganisms. However, studies of viral communities are challenging to interpret because the vast majority of viruses are known only from sequence fragments, and their taxonomy, hosts, and genetic repertoires are unknown. Our study establishes a basis for comparison that will advance understanding of viral ecology in diverse global environments, particularly in the High Arctic. Rising temperatures in this region mean that researchers have limited time remaining to understand the biodiversity and biogeochemical cycles of ice-dependent environments and the consequences of these rapid, irreversible changes. The case of the Milne Fiord epishelf lake has special urgency because of the rarity of this type of "floating lake" ecosystem and its location in the Last Ice Area, a region of thick sea ice with global importance for conservation efforts.


Assuntos
Ecossistema , Microbiota , Regiões Árticas , Camada de Gelo , Lagos , Água do Mar
5.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35884228

RESUMO

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

6.
Microorganisms ; 10(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744692

RESUMO

Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.

7.
Science ; 376(6589): 156-162, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35389782

RESUMO

Whereas DNA viruses are known to be abundant, diverse, and commonly key ecosystem players, RNA viruses are insufficiently studied outside disease settings. In this study, we analyzed ≈28 terabases of Global Ocean RNA sequences to expand Earth's RNA virus catalogs and their taxonomy, investigate their evolutionary origins, and assess their marine biogeography from pole to pole. Using new approaches to optimize discovery and classification, we identified RNA viruses that necessitate substantive revisions of taxonomy (doubling phyla and adding >50% new classes) and evolutionary understanding. "Species"-rank abundance determination revealed that viruses of the new phyla "Taraviricota," a missing link in early RNA virus evolution, and "Arctiviricota" are widespread and dominant in the oceans. These efforts provide foundational knowledge critical to integrating RNA viruses into ecological and epidemiological models.


Assuntos
Genoma Viral , Vírus de RNA , Vírus , Evolução Biológica , Ecossistema , Oceanos e Mares , Filogenia , RNA , Vírus de RNA/genética , Viroma/genética , Vírus/genética
8.
Front Microbiol ; 13: 779505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222324

RESUMO

Arctic lakes are experiencing increasingly shorter periods of ice cover due to accelerated warming at northern high latitudes. Given the control of ice cover thickness and duration over many limnological processes, these changes will have pervasive effects. However, due to their remote and extreme locations even first-order data on lake ecology is lacking for many ecosystems. The aim of this study was to characterize and compare the microbial communities of four closely spaced lakes in Stuckberry Valley (northern Ellesmere Island, Canadian Arctic Archipelago), in the coastal margin zone of the Last Ice Area, that differed in their physicochemical, morphological and catchment characteristics. We performed high-throughput amplicon sequencing of the V4 16S rRNA gene to provide inter- and intra-lake comparisons. Two deep (>25 m) and mostly oxygenated lakes showed highly similar community assemblages that were distinct from those of two shallower lakes (<10 m) with anoxic bottom waters. Proteobacteria, Verrucomicrobia, and Planctomycetes were the major phyla present in the four water bodies. One deep lake contained elevated proportions of Cyanobacteria and Thaumarchaeota that distinguished it from the others, while the shallow lakes had abundant communities of predatory bacteria, as well as microbes in their bottom waters that contribute to sulfur and methane cycles. Despite their proximity, our data suggest that local habitat filtering is the primary determinant of microbial diversity in these systems. This study provides the first detailed examination of the microbial assemblages of the Stuckberry lakes system, resulting in new insights into the microbial ecology of the High Arctic.

9.
J Gen Virol ; 102(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34356002

RESUMO

The family Marnaviridae comprises small non-enveloped viruses with positive-sense RNA genomes of 8.6-9.6 kb. Isolates infect marine single-celled eukaryotes (protists) that come from diverse lineages. Some members are known from metagenomic studies of ocean virioplankton, with additional unclassified viruses described from metagenomic datasets derived from marine and freshwater environments. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Marnaviridae, which is available at ictv.global/report/marnaviridae.


Assuntos
Genoma Viral , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Animais , Proteínas do Capsídeo , Eucariotos , Especificidade de Hospedeiro , Hidrobiologia , Metagenômica , Infecções por Vírus de RNA/virologia , Vírus de RNA/ultraestrutura , RNA Viral , Vírion/classificação , Vírion/genética , Vírion/ultraestrutura , Replicação Viral
10.
Environ Microbiol ; 23(6): 2955-2968, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33760341

RESUMO

Nostoc (Nostocales, Cyanobacteria) has a global distribution in the Polar Regions. However, the genomic diversity of Nostoc is little known and there are no genomes available for polar Nostoc. Here we carried out the first genomic analysis of the Nostoc commune morphotype with a recent sample from the High Arctic and a herbarium specimen collected during the British Arctic Expedition (1875-76). Comparisons of the polar genomes with 26 present-day non-polar members of the Nostocales family highlighted that there are pronounced genetic variations among Nostoc strains and species. Osmoprotection and other stress genes were found in all Nostoc strains, but the two Arctic strains had markedly higher numbers of biosynthetic gene clusters for uncharacterised non-ribosomal peptide synthetases, suggesting a high diversity of secondary metabolites. Since viral-host interactions contribute to microbial diversity, we analysed the CRISPR-Cas systems in the Arctic and two temperate Nostoc species. There were a large number of unique repeat-spacer arrays in each genome, indicating diverse histories of viral attack. All Nostoc strains had a subtype I-D system, but the polar specimens also showed evidence of a subtype I-B system that has not been previously reported in cyanobacteria, suggesting diverse cyanobacteria-virus interactions in the Arctic.


Assuntos
Sistemas CRISPR-Cas , Nostoc , Genômica , Família Multigênica , Nostoc/genética , Filogenia
11.
Sci Rep ; 11(1): 2868, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536480

RESUMO

Ice cover persists throughout summer over many lakes at extreme polar latitudes but is likely to become increasingly rare with ongoing climate change. Here we addressed the question of how summer ice-cover affects the underlying water column of Ward Hunt Lake, a freshwater lake in the Canadian High Arctic, with attention to its vertical gradients in limnological properties that would be disrupted by ice loss. Profiling in the deepest part of the lake under thick mid-summer ice revealed a high degree of vertical structure, with gradients in temperature, conductivity and dissolved gases. Dissolved oxygen, nitrous oxide, carbon dioxide and methane rose with depth to concentrations well above air-equilibrium, with oxygen values at > 150% saturation in a mid-water column layer of potential convective mixing. Fatty acid signatures of the seston also varied with depth. Benthic microbial mats were the dominant phototrophs, growing under a dim green light regime controlled by the ice cover, water itself and weakly colored dissolved organic matter that was mostly autochthonous in origin. In this and other polar lakes, future loss of mid-summer ice will completely change many water column properties and benthic light conditions, resulting in a markedly different ecosystem regime.

12.
Microbiome ; 9(1): 46, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593438

RESUMO

BACKGROUND: The sulfur cycle encompasses a series of complex aerobic and anaerobic transformations of S-containing molecules and plays a fundamental role in cellular and ecosystem-level processes, influencing biological carbon transfers and other biogeochemical cycles. Despite their importance, the microbial communities and metabolic pathways involved in these transformations remain poorly understood, especially for inorganic sulfur compounds of intermediate oxidation states (thiosulfate, tetrathionate, sulfite, polysulfides). Isolated and highly stratified, the extreme geochemical and environmental features of meromictic ice-capped Lake A, in the Canadian High Arctic, provided an ideal model ecosystem to resolve the distribution and metabolism of aquatic sulfur cycling microorganisms along redox and salinity gradients. RESULTS: Applying complementary molecular approaches, we identified sharply contrasting microbial communities and metabolic potentials among the markedly distinct water layers of Lake A, with similarities to diverse fresh, brackish and saline water microbiomes. Sulfur cycling genes were abundant at all depths and covaried with bacterial abundance. Genes for oxidative processes occurred in samples from the oxic freshwater layers, reductive reactions in the anoxic and sulfidic bottom waters and genes for both transformations at the chemocline. Up to 154 different genomic bins with potential for sulfur transformation were recovered, revealing a panoply of taxonomically diverse microorganisms with complex metabolic pathways for biogeochemical sulfur reactions. Genes for the utilization of sulfur cycle intermediates were widespread throughout the water column, co-occurring with sulfate reduction or sulfide oxidation pathways. The genomic bin composition suggested that in addition to chemical oxidation, these intermediate sulfur compounds were likely produced by the predominant sulfur chemo- and photo-oxidisers at the chemocline and by diverse microbial degraders of organic sulfur molecules. CONCLUSIONS: The Lake A microbial ecosystem provided an ideal opportunity to identify new features of the biogeochemical sulfur cycle. Our detailed metagenomic analyses across the broad physico-chemical gradients of this permanently stratified lake extend the known diversity of microorganisms involved in sulfur transformations over a wide range of environmental conditions. The results indicate that sulfur cycle intermediates and organic sulfur molecules are major sources of electron donors and acceptors for aquatic and sedimentary microbial communities in association with the classical sulfur cycle. Video abstract.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Ecossistema , Lagos/microbiologia , Metagenoma , Enxofre/metabolismo , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Canadá , Oxirredução
13.
Viruses ; 12(11)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105728

RESUMO

Permafrost thaw lakes including thermokarst lakes and ponds are ubiquitous features of Subarctic and Arctic landscapes and are hotspots of microbial activity. Input of terrestrial organic matter into the planktonic microbial loop of these lakes may greatly amplify global greenhouse gas emissions. This microbial loop, dominated in the summer by aerobic microorganisms including phototrophs, is radically different in the winter, when metabolic processes shift to the anaerobic degradation of organic matter. Little is known about the viruses that infect these microbes, despite evidence that viruses can control microbial populations and influence biogeochemical cycling in other systems. Here, we present the results of a metagenomics-based study of viruses in the larger than 0.22 µm fraction across two seasons (summer and winter) in a permafrost thaw lake in Subarctic Canada. We uncovered 351 viral populations (vOTUs) in the surface waters of this lake, with diversity significantly greater during the summer. We also identified and characterized several phage genomes and prophages, which were mostly present in the summer. Finally, we compared the viral community of this waterbody to other habitats and found unexpected similarities with distant bog lakes in North America.


Assuntos
Lagos/virologia , Metagenômica , Pergelissolo/virologia , Estações do Ano , Vírus/genética , Regiões Árticas , Bacteriófagos/genética , Canadá , Genoma Viral
14.
mSphere ; 5(3)2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404515

RESUMO

High-latitude, perennially stratified (meromictic) lakes are likely to be especially vulnerable to climate warming because of the importance of ice in maintaining their water column structure and associated distribution of microbial communities. This study aimed to characterize viral abundance, diversity, and distribution in a meromictic lake of marine origin on the far northern coast of Ellesmere Island, in the Canadian High Arctic. We collected triplicate samples for double-stranded DNA (dsDNA) viromics from five depths that encompassed the major features of the lake, as determined by limnological profiling of the water column. Viral abundance and virus-to-prokaryote ratios were highest at greater depths, while bacterial and cyanobacterial counts were greatest in the surface waters. The viral communities from each zone of the lake defined by salinity, temperature, and dissolved oxygen concentrations were markedly distinct, suggesting that there was little exchange of viral types among lake strata. Ten viral assembled genomes were obtained from our libraries, and these also segregated with depth. This well-defined structure of viral communities was consistent with that of potential hosts. Viruses from the monimolimnion, a deep layer of ancient Arctic Ocean seawater, were more diverse and relatively abundant, with few similarities to available viral sequences. The Lake A viral communities also differed from published records from the Arctic Ocean and meromictic Ace Lake in Antarctica. This first characterization of viral diversity from this sentinel environment underscores the microbial richness and complexity of an ecosystem type that is increasingly exposed to major perturbations in the fast-changing Arctic.IMPORTANCE The Arctic is warming at an accelerating pace, and the rise in temperature has increasing impacts on the Arctic biome. Lakes are integrators of their surroundings and thus excellent sentinels of environmental change. Despite their importance in the regulation of key microbial processes, viruses remain largely uncharacterized in Arctic lacustrine environments. We sampled a highly stratified meromictic lake near the northern limit of the Canadian High Arctic, a region in rapid transition due to climate change. We found that the different layers of the lake harbored viral communities that were strikingly dissimilar and highly divergent from known viruses. Viruses were more abundant in the deepest part of the lake containing ancient Arctic Ocean seawater that was trapped during glacial retreat and were genomically unlike any viruses previously described. This research demonstrates the complexity and novelty of viral communities in an environment that is vulnerable to ongoing perturbation.


Assuntos
Lagos/virologia , Água do Mar/virologia , Viroma/genética , Vírus/genética , Regiões Árticas , Canadá , Filogenia , RNA Ribossômico 16S/genética , Salinidade , Estações do Ano , Microbiologia da Água
15.
Front Microbiol ; 10: 2359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681222

RESUMO

Protists are key stone components of aquatic ecosystems, sustaining primary productivity and aquatic food webs. However, their diversity, ecology and structuring factors shaping their temporal distribution remain strongly misunderstood in freshwaters. Using high-throughput sequencing on water samples collected over 16 different months (including two summer and two winter periods), combined with geochemical measurements and climate monitoring, we comprehensively determined the pico- and nanoeukaryotic community composition and dynamics in a Canadian river undergoing prolonged ice-cover winters. Our analysis revealed a large protist diversity in this fluctuating ecosystem and clear seasonal patterns demonstrating a direct and/or indirect selective role of abiotic factors, such as water temperature or nitrogen concentrations, in structuring the eukaryotic microbial community. Nonetheless, our results also revealed that primary productivity, predatory as well as parasitism lifestyles, inferred from fine phylogenetic placements, remained potentially present over the annual cycle, despite the large seasonal fluctuations and the remodeling of the community composition under ice. In addition, potential interplays with the bacterial community composition were identified supporting a possible contribution of the bacterial community to the temporal dynamics of the protist community structure. Our results illustrate the complexity of the eukaryotic microbial community and provide a substantive and useful dataset to better understand the global freshwater ecosystem functioning.

16.
Cell ; 177(5): 1109-1123.e14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31031001

RESUMO

Microbes drive most ecosystems and are modulated by viruses that impact their lifespan, gene flow, and metabolic outputs. However, ecosystem-level impacts of viral community diversity remain difficult to assess due to classification issues and few reference genomes. Here, we establish an ∼12-fold expanded global ocean DNA virome dataset of 195,728 viral populations, now including the Arctic Ocean, and validate that these populations form discrete genotypic clusters. Meta-community analyses revealed five ecological zones throughout the global ocean, including two distinct Arctic regions. Across the zones, local and global patterns and drivers in viral community diversity were established for both macrodiversity (inter-population diversity) and microdiversity (intra-population genetic variation). These patterns sometimes, but not always, paralleled those from macro-organisms and revealed temperate and tropical surface waters and the Arctic as biodiversity hotspots and mechanistic hypotheses to explain them. Such further understanding of ocean viruses is critical for broader inclusion in ecosystem models.


Assuntos
Organismos Aquáticos/genética , Biodiversidade , Vírus de DNA/genética , DNA Viral/genética , Metagenoma , Microbiologia da Água
17.
Front Microbiol ; 9: 2881, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30564204

RESUMO

Microbial mats are ubiquitous in polar freshwater ecosystems and sustain high concentrations of biomass despite the extreme seasonal variations in light and temperature. Here we aimed to resolve genomic adaptations for light-harvesting, bright-light protection, and carbon flow in mats that undergo seasonal freeze-up. To bracket a range of communities in shallow water habitats, we sampled cyanobacterial mats in the thawed littoral zone of two lakes situated at the northern and southern limits of the Canadian Arctic permafrost zone. We applied a multiphasic approach using pigment profiles from high performance liquid chromatography, Illumina MiSeq sequencing of the 16S and 18S rRNA genes, and metagenomic analysis. The mats shared a taxonomic and functional core microbiome, dominated by oxygenic cyanobacteria with light-harvesting and photoprotective pigments, bacteria with bacteriochlorophyll, and bacteria with light-driven Type I rhodopsins. Organisms able to use light for energy related processes represented up to 85% of the total microbial community, with 15-30% attributable to cyanobacteria and 55-70% attributable to other bacteria. The proportion of genes involved in anaplerotic CO2 fixation was greater than for genes associated with oxygenic photosynthesis. Diverse heterotrophic bacteria, eukaryotes (including metazoans and fungi) and viruses co-occurred in both communities. The results indicate a broad range of strategies for capturing sunlight and CO2, and for the subsequent flow of energy and carbon in these complex, light-driven microbial ecosystems.

18.
ISME J ; 12(12): 2988-3000, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30087410

RESUMO

Aquatic ecosystems in the High Arctic are facing unprecedented changes as a result of global warming effects on the cryosphere. Snow pack is a central feature of northern landscapes, but the snow microbiome and its microbial connectivity to adjacent and downstream habitats have been little explored. To evaluate these aspects, we sampled along a hydrologic continuum at Ward Hunt Lake (latitude 83°N) in the Canadian High Arctic, from snow banks, water tracks in the permafrost catchment, the upper and lower strata of the lake, and the lake outlet and its coastal marine mixing zone. The microbial communities were analyzed by high-throughput sequencing of 16 and 18S rRNA to determine the composition of potentially active Bacteria, Archaea and microbial Eukarya. Each habitat had distinct microbial assemblages, with highest species richness in the subsurface water tracks that connected the melting snow to the lake. However, up to 30% of phylotypes were shared along the hydrologic continuum, showing that many taxa originating from the snow can remain in the active fraction of downstream microbiomes. The results imply that changes in snowfall associated with climate warming will affect microbial community structure throughout all spatially connected habitats within snow-fed polar ecosystems.


Assuntos
Archaea/classificação , Bactérias/classificação , Eucariotos/classificação , Microbiota , Neve/microbiologia , Regiões Árticas , Canadá , Clima , Sequenciamento de Nucleotídeos em Larga Escala , Lagos/microbiologia , Pergelissolo/microbiologia , Análise de Sequência de DNA
19.
J Microbiol Methods ; 138: 60-71, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-26995332

RESUMO

The Sanger sequencing method produces relatively long DNA sequences of unmatched quality and has been considered for long time as the gold standard for sequencing DNA. Many improvements of the Sanger method that culminated with fluorescent dyes coupled with automated capillary electrophoresis enabled the sequencing of the first genomes. Nevertheless, using this technology to sequence whole genomes was costly, laborious and time consuming even for genomes that are relatively small in size. A major technological advance was the introduction of next-generation sequencing (NGS) pioneered by 454 Life Sciences in the early part of the 21th century. NGS allowed scientists to sequence thousands to millions of DNA molecules in a single machine run. Since then, new NGS technologies have emerged and existing NGS platforms have been improved, enabling the production of genome sequences at an unprecedented rate as well as broadening the spectrum of NGS applications. The current affordability of generating genomic information, especially with microbial samples, has resulted in a false sense of simplicity that belies the fact that many researchers still consider these technologies a black box. In this review, our objective is to identify and discuss four steps that we consider crucial to the success of any NGS-related project. These steps are: (1) the definition of the research objectives beyond sequencing and appropriate experimental planning, (2) library preparation, (3) sequencing and (4) data analysis. The goal of this review is to give an overview of the process, from sample to analysis, and discuss how to optimize your resources to achieve the most from your NGS-based research. Regardless of the evolution and improvement of the sequencing technologies, these four steps will remain relevant.


Assuntos
DNA Bacteriano/análise , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , DNA Bacteriano/genética , Biblioteca Gênica
20.
Sci Rep ; 6: 35617, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752114

RESUMO

The bacterium Aeromonas salmonicida subsp. salmonicida is a common pathogen in fish farms worldwide. Since the antibiotic resistance of this bacterial species is on the increase, it is important to have a broader view on this issue. In the present study, we tested the presence of known plasmids conferring multi-drug resistance as well as antibiotic resistance genes by a PCR approach in 100 Canadian A. salmonicida subsp. salmonicida isolates. Our study highlighted the dominance of the conjugative pSN254b plasmid, which confers multi-drug resistance. We also identified a new multi-drug plasmid named pAsa8, which has been characterized by a combination of sequencing technologies (Illumina and Oxford nanopore). This new plasmid harbors a complex class 1 integron similar to the one of the Salmonella genomic island 1 (SGI1) found in Salmonella enterica and Proteus mirabilis. Consequently, in addition to providing an update on the A. salmonicida subsp. salmonicida isolates that are resistant to antibiotics, our data suggest that this bacterium is potentially an important reservoir of drug resistance genes and should consequently be monitored more extensively. In addition, we describe a screening method that has the potential to become a diagnostic tool that is complementary to other methods currently in use.


Assuntos
Aeromonas salmonicida/fisiologia , Antibacterianos/uso terapêutico , Resistência a Medicamentos/genética , Doenças dos Peixes/tratamento farmacológico , Peixes/imunologia , Ilhas Genômicas/genética , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Integrons/genética , Plasmídeos/genética , Animais , Canadá , Doenças dos Peixes/genética , Testes Genéticos , Infecções por Bactérias Gram-Negativas/diagnóstico , Infecções por Bactérias Gram-Negativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...