Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(1): 200771, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596309

RESUMO

The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.

2.
Theranostics ; 13(14): 4745-4761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771787

RESUMO

Peptide receptor radionuclide therapy (PRRT) using 177Lutetium-DOTA-octreotate (LuTate) for neuroendocrine tumours (NET) is now an approved treatment available in many countries, though primary or secondary resistance continue to limit its effectiveness or durability. We hypothesised that a genome-wide CRISPR/Cas9 screen would identify key mediators of response to LuTate and gene targets that might offer opportunities for novel combination therapies for NET patients. Methods: We utilised a genome-wide CRISPR-Cas9 screen in LuTate-treated cells to identify genes that impact on the sensitivity or resistance of cells to LuTate. Hits were validated through single-gene knockout. LuTate-resistant cells were assessed to confirm LuTate uptake and retention, and persistence of somatostatin receptor 2 (SSTR2) expression. Gene knockouts conferring LuTate sensitivity were further characterised by pharmacological sensitisation using specific inhibitors and in vivo analysis of the efficacy of these inhibitors in combination with LuTate. Results: The CRISPR-Cas9 screen identified several potential targets for both resistance and sensitivity to PRRT. Two gene knockouts which conferred LuTate resistance in vitro, ARRB2 and MVP, have potential mechanisms related to LuTate binding and retention, and modulation of DNA-damage repair (DDR) pathways, respectively. The screen showed that sensitivity to LuTate treatment in vitro can be conferred by the loss of a variety of genes involved in DDR pathways, with loss of genes involved in Non-Homologous End-Joining (NHEJ) being the most lethal. Loss of the key NHEJ gene, PRKDC (DNA-PK), either by gene loss or inhibition by two different inhibitors, resulted in significantly reduced cell survival upon exposure of cells to LuTate. In SSTR2-positive xenograft-bearing mice, the combination of nedisertib (a DNA-PK specific inhibitor) and LuTate produced a more robust control of tumour growth and increased survival compared to LuTate alone. Conclusions: DDR pathways are critical for sensing and repairing radiation-induced DNA damage, and our study shows that regulation of DDR pathways may be involved in both resistance and sensitivity to PRRT. Additionally, the use of a DNA-PK inhibitor in combination with LuTate PRRT significantly improves the efficacy of the treatment in pre-clinical models, providing further evidence for the clinical efficacy of this combination.


Assuntos
Lutécio , Tumores Neuroendócrinos , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , DNA , Lutécio/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/radioterapia , Octreotida/uso terapêutico , Radioisótopos/uso terapêutico
3.
J Med Chem ; 66(15): 10289-10303, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493526

RESUMO

Peptide receptor radionuclide therapy (PRRT) is a promising form of systemic radiation therapy designed to eradicate cancer. Cholecystokinin-2 receptor (CCK2R) is an important molecular target that is highly expressed in a range of cancers. This study describes the synthesis and in vivo characterization of a novel series of 177Lu-labeled peptides ([177Lu]Lu-2b-4b) in comparison with the reference CCK2R-targeting peptide CP04 ([177Lu]Lu-1b). [177Lu]Lu-1b-4b showed high chemical purity (HPLC ≥ 94%), low Log D7.4 (-4.09 to -4.55) with strong binding affinity to CCK2R (KD 0.097-1.61 nM), and relatively high protein binding (55.6-80.2%) and internalization (40-67%). Biodistribution studies of the novel 177Lu-labeled peptides in tumors (AR42J and A431-CCK2R) showed uptake one- to eight-fold greater than the reference compound CP04 at 1, 24, and 48 h. Rapid clearance and high tumor uptake and retention were established for [177Lu]Lu-2b-4b, making these compounds excellent candidates for theranostic applications against CCK2R-expressing tumors.


Assuntos
Neoplasias , Receptor de Colecistocinina B , Receptor de Colecistocinina B/metabolismo , Medicina de Precisão , Distribuição Tecidual , Linhagem Celular Tumoral , Peptídeos/química , Neoplasias/tratamento farmacológico
4.
Nat Commun ; 13(1): 1100, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35232962

RESUMO

Despite the success of therapies targeting oncogenes in cancer, clinical outcomes are limited by residual disease that ultimately results in relapse. This residual disease is often characterized by non-genetic adaptive resistance, that in melanoma is characterised by altered metabolism. Here, we examine how targeted therapy reprograms metabolism in BRAF-mutant melanoma cells using a genome-wide RNA interference (RNAi) screen and global gene expression profiling. Using this systematic approach we demonstrate post-transcriptional regulation of metabolism following BRAF inhibition, involving selective mRNA transport and translation. As proof of concept we demonstrate the RNA processing kinase U2AF homology motif kinase 1 (UHMK1) associates with mRNAs encoding metabolism proteins and selectively controls their transport and translation during adaptation to BRAF-targeted therapy. UHMK1 inactivation induces cell death by disrupting therapy induced metabolic reprogramming, and importantly, delays resistance to BRAF and MEK combination therapy in multiple in vivo models. We propose selective mRNA processing and translation by UHMK1 constitutes a mechanism of non-genetic resistance to targeted therapy in melanoma by controlling metabolic plasticity induced by therapy.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Humanos , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Terapia de Alvo Molecular , Mutação , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/metabolismo , RNA Mensageiro/uso terapêutico
5.
Eur J Clin Pharmacol ; 78(1): 53-64, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34480602

RESUMO

BACKGROUND: Body surface area (BSA)-based dosing of irinotecan (IR) does not account for its pharmacokinetic (PK) and pharmacodynamic (PD) variabilities. Functional hepatic nuclear imaging (HNI) and excretory/metabolic/PD pharmacogenomics have shown correlations with IR disposition and toxicity/efficacy. This study reports the development of a nonlinear mixed-effect population model to identify pharmacogenomic and HNI-related covariates that impact on IR disposition to support dosage optimization. METHODS: Patients had advanced colorectal cancer treated with IR combination therapy. Baseline blood was analysed by Affymetrix DMET™ Plus Array and, for PD, single nucleotide polymorphisms (SNPs) by Sanger sequencing. For HNI, patients underwent 99mTc-IDA hepatic imaging, and data was analysed for hepatic extraction/excretion parameters. Blood was taken for IR and metabolite (SN38, SN38G) analysis on day 1 cycle 1. Population modelling utilised NONMEM version 7.2.0, with structural PK models developed for each moiety. Covariates include patient demographics, HNI parameters and pharmacogenomic variants. RESULTS: Analysis included (i) PK data: 32 patients; (ii) pharmacogenomic data: 31 patients: 750 DMET and 22 PD variants; and (iii) HNI data: 32 patients. On initial analysis, overall five SNPs were identified as significant covariates for CLSN38. Only UGT1A3_c.31 T > C and ABCB1_c.3435C > T were included in the final model, whereby CLSN38 reduced from 76.8 to 55.1%. CONCLUSION: The identified UGT1A3_c.31 T > C and ABCB1_c.3435C > T variants, from wild type to homozygous, were included in the final model for SN38 clearance.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Glucuronosiltransferase/genética , Irinotecano/farmacocinética , Fígado/metabolismo , Inibidores da Topoisomerase I/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Austrália , Neoplasias Colorretais/patologia , Genótipo , Humanos , Irinotecano/uso terapêutico , Fígado/diagnóstico por imagem , Modelos Biológicos , Metástase Neoplásica , Farmacogenética , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Inibidores da Topoisomerase I/uso terapêutico
6.
Cancers (Basel) ; 13(24)2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34944961

RESUMO

Despite the success of immune checkpoint inhibitors that target cytotoxic lymphocyte antigen-4 (CTLA-4) and programmed-cell-death-1 (PD-1) in the treatment of metastatic melanoma, there is still great need to develop robust options for patients who are refractory to first line immunotherapy. As such there has been a resurgence in interest of adoptive cell transfer (ACT) particularly derived from tumor infiltrating lymphocytes. Moreover, the addition of cyclin dependent kinase 4/6 inhibitors (CDK4/6i) have been shown to greatly extend duration of response in combination with BRAF-MEK inhibitors (BRAF-MEKi) in pre-clinical models of melanoma. We therefore investigated whether combinations of BRAF-MEK-CDK4/6i and ACT were efficacious in murine models of melanoma. Triplet targeted therapy of BRAF-MEK-CDK4/6i with OT-1 ACT led to sustained and robust anti-tumor responses in BRAFi sensitive YOVAL1.1. We also show that BRAF-MEKi but not CDK4/6i enhanced MHC Class I expression in melanoma cell lines in vitro. Paradoxically CDK4/6i in low concentrations of IFN-γ reduced expression of MHC Class I and PD-L1 in YOVAL1.1. Overall, this work provides additional pre-clinical evidence to pursue combination of BRAF-MEK-CDK4/6i and to combine this combination with ACT in the clinic.

7.
Chem Sci ; 12(26): 9004-9016, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34276928

RESUMO

Identification of tumors which over-express Epidermal Growth Factor Receptor (EGFR) is important in selecting patients for anti-EGFR therapies. Enzymatic bioconjugation was used to introduce positron-emitting radionuclides (89Zr, 64Cu) into an anti-EGFR antibody fragment for Positron Emission Tomography (PET) imaging the same day as injection. A monovalent antibody fragment with high affinity for EGFR was engineered to include a sequence that is recognized by the transpeptidase sortase A. Two different metal chelators, one for 89ZrIV and one for 64CuII, were modified with a N-terminal glycine to enable them to act as substrates in sortase A mediated bioconjugation to the antibody fragment. Both fragments provided high-quality PET images of EGFR positive tumors in a mouse model at 3 hours post-injection, a significant advantage when compared to radiolabeled full antibodies that require several days between injection of the tracer and imaging. The use of enzymatic bioconjugation gives reproducible homogeneous products with the metal complexes selectively installed on the C-terminus of the antibody potentially simplifying regulatory approval.

8.
J Med Chem ; 64(8): 4841-4856, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33826325

RESUMO

Proteins adopt unique folded secondary and tertiary structures that are responsible for their remarkable biological properties. This structural complexity is key in designing efficacious peptides that can mimic the three-dimensional structure needed for biological function. In this study, we employ different chemical strategies to induce and stabilize a ß-hairpin fold of peptides targeting cholecystokinin-2 receptors for theranostic application (combination of a targeted therapeutic and a diagnostic companion). The newly developed peptides exhibited enhanced folding capacity as demonstrated by circular dichroism (CD) spectroscopy, ion-mobility spectrometry-mass spectrometry, and two-dimensional (2D) NMR experiments. Enhanced folding characteristics of the peptides led to increased biological potency, affording four optimal Ga-68 labeled radiotracers ([68Ga]Ga-4b, [68Ga]Ga-11b-13b) targeting CCK-2R. In particular, [68Ga]Ga-12b and [68Ga]Ga-13b presented improved metabolic stability, enhanced cell internalization, and up to 6 fold increase in tumor uptake. These peptides hold great promise as next-generation theranostic radiopharmaceuticals.


Assuntos
Neoplasias/diagnóstico , Peptídeos/química , Compostos Radiofarmacêuticos/química , Receptor de Colecistocinina B/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Radioisótopos de Gálio/química , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Peptídeos/síntese química , Peptídeos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Medicina de Precisão , Ligação Proteica , Estrutura Terciária de Proteína , Compostos Radiofarmacêuticos/metabolismo , Receptor de Colecistocinina B/química , Distribuição Tecidual , Transplante Heterólogo
9.
Bioconjug Chem ; 32(7): 1192-1203, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-33788556

RESUMO

Radiolabeled derivatives of Tyr3-octreotide and Tyr3-octreotate, synthetic analogues of the peptide hormone somatostatin, can be used for positron emission tomography (PET) imaging of somatostatin receptor expression in neuroendocrine tumors. In this work, a squaramide ester derivative of desferrioxamine B (H3DFOSq) was used attach either Tyr3-octreotide or Tyr3-octreotate to the metal binding ligand to give H3DFOSq-TIDE and H3DFOSq-TATE. These new peptide-H3DFOSq conjugates form stable complexes with either of the positron-emitting radionuclides gallium-68 (t1/2 = 68 min) or zirconium-89 (t1/2 = 3.3 days). The new complexes were evaluated in an AR42J xenograft model that has endogenous expression of SSTR2. All four agents displayed good tumor uptake and produced high-quality PET images. For both radionuclides, the complexes formed with H3DFOSq-TATE performed better, with higher tumor uptake and retention than the complexes formed with H3DFOSq-TIDE. The versatile ligands presented here can be radiolabeled with either gallium-68 or zirconium-89 at room temperature. The long radioactive half-life of zirconium-89 makes distribution of pre-synthesized tracers produced to certified standards feasible and could increase the number of clinical centers that can perform diagnostic PET imaging of neuroendocrine tumors.


Assuntos
Desferroxamina/química , Radioisótopos de Gálio/química , Octreotida/química , Quinina/análogos & derivados , Radioisótopos/química , Somatostatina/metabolismo , Zircônio/química , Animais , Camundongos , Quinina/química
10.
Cancer Chemother Pharmacol ; 88(1): 39-52, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33755789

RESUMO

PURPOSE: Irinotecan (IR) displays significant PK/PD variability. This study evaluated functional hepatic imaging (HNI) and extensive pharmacogenomics (PGs) to explore associations with IR PK and PD (toxicity and response). METHODS: Eligible patients (pts) suitable for Irinotecan-based therapy. At baseline: (i) PGs: blood analyzed by the Affymetrix-DMET™-Plus-Array (1936 variants: 1931 single nucleotide polymorphisms [SNPs] and 5 copy number variants in 225 genes, including 47 phase I, 80 phase II enzymes, and membrane transporters) and Sanger sequencing (variants in HNF1A, Topo-1, XRCC1, PARP1, TDP, CDC45L, NKFB1, and MTHFR), (ii) HNI: pts given IV 250 MBq-99mTc-IDA, data derived for hepatic extraction/excretion parameters (CLHNI, T1/2-HNI, 1hRET, HEF, Td1/2). In cycle 1, blood was taken for IR analysis and PK parameters were derived by non-compartmental methods. Associations were evaluated between HNI and PGs, with IR PK, toxicity, objective response rate (ORR) and progression-free survival (PFS). RESULTS: N = 31 pts. The two most significant associations between PK and PD with gene variants or HNI parameters (P < 0.05) included: (1) PK: SN38-Metabolic Ratio with CLHNI, 1hRET, (2) Grade 3+ diarrhea with SLC22A2 (rs 316019), GSTM5 (rs 1296954), (3) Grade 3+ neutropenia with CLHNI, 1hRET, SLC22A2 (rs 316019), CYP4F2 (rs2074900) (4) ORR with ALDH2 (rs 886205), MTHFR (rs 1801133). (5) PFS with T1/2-HNI, XDH (rs 207440), and ABCB11 (rs 4148777). CONCLUSIONS: Exploratory associations were observed between Irinotecan PK/PD with hepatic functional imaging and extensive pharmacogenomics. Further work is required to confirm and validate these findings in a larger cohort of patients. AUSTRALIAN NEW ZEALAND CLINICAL TRIALS REGISTRY (ANZCTR) NUMBER: ACTRN12610000897066, Date registered: 21/10/2010.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Irinotecano/farmacocinética , Irinotecano/uso terapêutico , Adulto , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Austrália , Neoplasias Colorretais/genética , Feminino , Genótipo , Humanos , Fígado/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Farmacogenética/métodos , Polimorfismo de Nucleotídeo Único/genética , Intervalo Livre de Progressão
11.
Cancer Immunol Res ; 9(2): 136-146, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33303574

RESUMO

Combined inhibition of BRAF, MEK, and CDK4/6 is currently under evaluation in clinical trials for patients with melanoma harboring a BRAFV600 mutation. While this triple therapy has potent tumor-intrinsic effects, the impact of this combination on antitumor immunity remains unexplored. Here, using a syngeneic BrafV600ECdkn2a-/-Pten-/- melanoma model, we demonstrated that triple therapy promoted durable tumor control through tumor-intrinsic mechanisms and promoted immunogenic cell death and T-cell infiltration. Despite this, tumors treated with triple therapy were unresponsive to immune checkpoint blockade (ICB). Flow cytometric and single-cell RNA sequencing analyses of tumor-infiltrating immune populations revealed that triple therapy markedly depleted proinflammatory macrophages and cross-priming CD103+ dendritic cells, the absence of which correlated with poor overall survival and clinical responses to ICB in patients with melanoma. Indeed, immune populations isolated from tumors of mice treated with triple therapy failed to stimulate T-cell responses ex vivo While combined BRAF, MEK, and CDK4/6 inhibition demonstrates favorable tumor-intrinsic activity, these data suggest that collateral effects on tumor-infiltrating myeloid populations may impact antitumor immunity. These findings have important implications for the design of combination strategies and clinical trials that incorporate BRAF, MEK, and CDK4/6 inhibition with immunotherapy for the treatment of patients with melanoma.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Imunoterapia/métodos , Melanoma/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Neoplasias Cutâneas/tratamento farmacológico , Animais , Quinase 4 Dependente de Ciclina/imunologia , Masculino , Melanoma/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/imunologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/imunologia , Neoplasias Cutâneas/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
J Nucl Med ; 62(6): 829-832, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33067341

RESUMO

Radionuclide therapy targeting prostate-specific membrane antigen (PSMA) is promising for prostate cancer. We previously reported a ligand, 64Cu-CuSarbisPSMA, featuring 2 lysine-ureido-glutamate groups. Here, we report the therapeutic potential of 67Cu-CuSarbisPSMA. Methods: Growth of PSMA-positive xenografts was evaluated after treatment with 67Cu-CuSarbisPSMA or 177Lu-LuPSMA imaging and therapy (I&T). Results: At 13 d after injection, tumor growth was similarly inhibited by the 2 tracers in a dose-dependent manner. Survival was comparable after single (30 MBq) or fractionated (2 × 15 MBq, 2 wk apart) administrations. Conclusion:67Cu-CuSarbisPSMA is efficacious in a PSMA-expressing model of prostate cancer.


Assuntos
Antígenos de Superfície/química , Radioisótopos de Cobre/química , Glutamato Carboxipeptidase II/química , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Marcação por Isótopo , Masculino , Neoplasias da Próstata/patologia
13.
Br J Cancer ; 124(3): 616-627, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33173151

RESUMO

BACKGROUND: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. METHODS: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. RESULTS: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. CONCLUSIONS: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


Assuntos
Benzotiazóis/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Dano ao DNA/efeitos dos fármacos , Recombinação Homóloga , Naftiridinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , RNA Polimerase I/antagonistas & inibidores , Inibidores da Topoisomerase I/farmacologia , Topotecan/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Quimioterapia Combinada , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular , Genes BRCA2 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gradação de Tumores , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Interferência de RNA , RNA Polimerase I/genética
14.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287202

RESUMO

Vitamin E, a natural antioxidant, is of interest to scientists, health care pundits and faddists; its nutritional and biomedical attributes may be validated, anecdotal or fantasy. Vitamin E is a mixture of tocopherols (TPs) and tocotrienols (T-3s), each class having four substitutional isomers (α-, ß-, γ-, δ-). Vitamin E analogues attain only low concentrations in most tissues, necessitating exacting invasive techniques for analytical research. Quantitative positron emission tomography (PET) with an F-18-labeled molecular probe would expedite access to Vitamin E's biodistributions and pharmacokinetics via non-invasive temporal imaging. (R)-6-(3-[18F]Fluoropropoxy)-2,7,8-trimethyl-2-(4,8,12-trimethyltrideca-3,7,11-trien-1-yl)-chromane ([18F]F-γ-T-3) was prepared for this purpose. [18F]F-γ-T-3 was synthesized from γ-T-3 in two steps: (i) 1,3-di-O-tosylpropane was introduced at C6-O to form TsO-γ-T-3, and (ii) reaction of this tosylate with [18F]fluoride in DMF/K222. Non-radioactive F-γ-T-3 was synthesized by reaction of γ-T-3 with 3-fluoropropyl methanesulfonate. [18F]F-γ-T-3 biodistribution in a murine tumor model was imaged using a small-animal PET scanner. F-γ-T-3 was prepared in 61% chemical yield. [18F]F-γ-T-3 was synthesized in acceptable radiochemical yield (RCY 12%) with high radiochemical purity (>99% RCP) in 45 min. Preliminary F-18 PET images in mice showed upper abdominal accumulation with evidence of renal clearance, only low concentrations in the thorax (lung/heart) and head, and rapid clearance from blood. [18F]F-γ-T-3 shows promise as an F-18 PET tracer for detailed in vivo studies of Vitamin E. The labeling procedure provides acceptable RCY, high RCP and pertinence to all eight Vitamin E analogues.


Assuntos
Fluoretos/química , Radioisótopos de Flúor/química , Distribuição Tecidual/fisiologia , Tocotrienóis/química , Tocotrienóis/farmacocinética , Vitamina E/química , Vitamina E/farmacocinética , Animais , Antioxidantes/química , Antioxidantes/farmacocinética , Linhagem Celular Tumoral , Feminino , Fluoretos/farmacocinética , Radioisótopos de Flúor/farmacocinética , Humanos , Marcação por Isótopo/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Sondas Moleculares/química , Sondas Moleculares/farmacocinética , Oxirredução , Tomografia por Emissão de Pósitrons/métodos , Radioquímica/métodos , Compostos Radiofarmacêuticos/metabolismo , gama-Tocoferol/química , gama-Tocoferol/farmacocinética
15.
EMBO J ; 39(21): e105111, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945574

RESUMO

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Assuntos
Neoplasias/metabolismo , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases , RNA Polimerase I/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico , Ribossomos/efeitos dos fármacos , Transcriptoma
16.
Inorg Chem ; 59(16): 11658-11669, 2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32799487

RESUMO

Alzheimer's disease is characterized by the presence of extracellular amyloid-ß plaques. Positron emission tomography (PET) imaging with tracers radiolabeled with positron-emitting radionuclides that bind to amyloid-ß plaques can assist in the diagnosis of Alzheimer's disease. With the goal of designing new imaging agents radiolabeled with positron-emitting copper-64 radionuclides that bind to amyloid-ß plaques, a family of bis(thiosemicarbazone) ligands with appended substituted stilbenyl functional groups has been prepared. The ligands form charge-neutral and stable complexes with copper(II). The new ligands can be radiolabeled with copper-64 at room temperature. Two lead complexes were demonstrated to bind to amyloid-ß plaques present in post-mortem brain tissue from subjects with clinically diagnosed Alzheimer's disease and crossed the blood-brain barrier in mice. The work presented here provides strategies to prepare compounds with radionuclides of copper that can be used for targeted brain PET imaging.


Assuntos
Peptídeos beta-Amiloides/química , Complexos de Coordenação/química , Cobre/química , Placa Amiloide/química , Estilbenos/química , Tiossemicarbazonas/química , Cristalografia por Raios X , Estrutura Molecular , Ligação Proteica
17.
J Med Chem ; 63(17): 9258-9270, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32786229

RESUMO

Prostate-specific membrane antigen (PSMA) is a carboxypeptidase that is overexpressed in prostate cancer and is an excellent candidate for targeted diagnostic imaging and therapy. Lysine-ureido-glutamate inhibitors of PSMA radiolabeled with positron-emitting radionuclides can be used for diagnostic imaging with positron emission tomography (PET). A squaramide ester derivative of desferrioxamine B (H3DFOSq) was used to prepare four new agents with either one or two lysine-ureido-glutamate pharmacophores. The H3DFOSq ligand can be used to form stable complexes with either of the positron-emitting radionuclides gallium-68 (t1/2 = 68 min) or zirconium-89 (t1/2 = 3.3 days). The complexes were evaluated in PSMA-positive xenograft mouse models. Bivalent inhibitors, where two pharmacophores are tethered to a single DFOSq ligand, have better tumor uptake than their monovalent analogues. The ligands presented here, which can be labeled with either gallium-68 or zirconium-89, have the potential to increase the number of clinical sites that can perform diagnostic PET imaging.


Assuntos
Antígenos de Superfície/metabolismo , Desferroxamina/química , Inibidores Enzimáticos/química , Radioisótopos de Gálio , Glutamato Carboxipeptidase II/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/patologia , Radioisótopos , Zircônio , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/farmacologia , Humanos , Marcação por Isótopo , Masculino , Camundongos , Quinina/análogos & derivados , Quinina/química , Distribuição Tecidual
18.
Sci Rep ; 10(1): 10196, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576907

RESUMO

Peptide receptor radionuclide therapy (PRRT) is an important treatment option for patients with somatostatin receptor-2 (SSTR2)-expressing neuroendocrine tumour (NET) though tumour regression occurs in only a minority of patients. Therefore, novel PRRT regimens with improved therapeutic activity are needed. Radiation induced DNA damage repair is an attractive therapeutic target to increase PRRT efficacy and consequently, we have characterised a panel of preclinical models for their SSTR2 expression, in vivo growth properties and response to 177Lu-DOTA-octreotate (LuTate) PRRT to identify models with features suitable for evaluating novel therapeutic combinations. In vitro studies using the SSTR2 expressing AR42J model demonstrate that the combination of LuTate and the small molecule Poly(ADP-ribose) polymerase-1 (PARP) inhibitor, talazoparib led to increased DNA double strand breaks, as assessed by γ-H2AX foci formation, as compared to LuTate alone. Furthermore, using the AR42J tumour model in vivo we demonstrate that the combination of LuTate and talazoparib significantly improved the anti-tumour efficacy of LuTate alone. These findings support the clinical evaluation of the combination of LuTate and PARP inhibition in SSTR2-expressing NET.


Assuntos
Antineoplásicos/farmacologia , Lutécio/fisiologia , Tumores Neuroendócrinos/tratamento farmacológico , Octreotida/análogos & derivados , Octreotida/farmacologia , Compostos Organometálicos/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Receptores de Somatostatina/metabolismo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ftalazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Radioisótopos , Compostos Radiofarmacêuticos/farmacologia
19.
J Nucl Med ; 61(12): 1800-1805, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32414949

RESUMO

Peptide receptor radionuclide therapy (PRRT) using radiolabeled octreotate is an effective treatment for somatostatin receptor 2-expressing neuroendocrine tumors. The diagnostic and therapeutic potential of 64Cu and 67Cu, respectively, offers the possibility of using a single somatostatin receptor-targeted peptide conjugate as a theranostic agent. A sarcophagine cage amine ligand, MeCOSar (5-(8-methyl-3,6,10,13,16,19-hexaaza-bicyclo[6.6.6]icosan-1-ylamino)-5-oxopentanoic acid), conjugated to (Tyr3)-octreotate, called 64Cu-CuSarTATE, was demonstrated to be an imaging agent and potential prospective dosimetry tool in 10 patients with neuroendocrine tumors. This study aimed to explore the antitumor efficacy of 67Cu-CuSarTATE in a preclinical model of neuroendocrine tumors and compare it with the standard PRRT agent, 177Lu-LuDOTA-Tyr3-octreotate (177Lu-LuTATE). Methods: The antitumor efficacy of various doses of 67Cu-CuSarTATE in AR42J (rat pancreatic exocrine) tumor-bearing mice was compared with 177Lu-LuTATE. Results: Seven days after a single administration of 67Cu-CuSarTATE (5 MBq), tumor growth was inhibited by 75% compared with vehicle control. Administration of 177Lu-LuTATE (5 MBq) inhibited tumor growth by 89%. Survival was extended from 12 d in the control group to 21 d after treatment with both 67Cu-CuSarTATE and 177Lu-LuTATE. In a second study, the efficacy of fractionated delivery of PRRT was assessed, comparing the efficacy of 30 MBq of 67Cu-CuSarTATE or 177Lu-LuTATE, either as a single intravenous injection or as two 15-MBq fractions 2 wk apart. Treatment of tumors with 2 fractions significantly improved survival over delivery as a single fraction (67Cu-CuSarTATE: 47 vs. 36 d [P = 0.036]; 177Lu-LuTATE: 46 vs. 29 d [P = 0.040]). Conclusion: This study demonstrates that 67Cu-CuSarTATE is well tolerated in BALB/c nude mice and highly efficacious against AR42J tumors in vivo. Administration of 67Cu-CuSarTATE and 177Lu-LuTATE divided into 2 fractions over 2 wk was more efficacious than administration of a single fraction. The antitumor activity of 67Cu-CuSarTATE in the AR42J tumor model demonstrated the suitability of this novel agent for clinical assessment in the treatment of somatostatin receptor 2-expressing neuroendocrine tumors.


Assuntos
Radioisótopos de Cobre/uso terapêutico , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/radioterapia , Octreotida/análogos & derivados , Receptores de Somatostatina/metabolismo , Somatostatina/metabolismo , Animais , Transporte Biológico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Tumores Neuroendócrinos/diagnóstico por imagem , Tumores Neuroendócrinos/patologia , Octreotida/metabolismo , Octreotida/uso terapêutico , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada
20.
Nat Commun ; 11(1): 2641, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457376

RESUMO

Acquired resistance to PARP inhibitors (PARPi) is a major challenge for the clinical management of high grade serous ovarian cancer (HGSOC). Here, we demonstrate CX-5461, the first-in-class inhibitor of RNA polymerase I transcription of ribosomal RNA genes (rDNA), induces replication stress and activates the DNA damage response. CX-5461 co-operates with PARPi in exacerbating replication stress and enhances therapeutic efficacy against homologous recombination (HR) DNA repair-deficient HGSOC-patient-derived xenograft (PDX) in vivo. We demonstrate CX-5461 has a different sensitivity spectrum to PARPi involving MRE11-dependent degradation of replication forks. Importantly, CX-5461 exhibits in vivo single agent efficacy in a HGSOC-PDX with reduced sensitivity to PARPi by overcoming replication fork protection. Further, we identify CX-5461-sensitivity gene expression signatures in primary and relapsed HGSOC. We propose CX-5461 is a promising therapy in combination with PARPi in HR-deficient HGSOC and also as a single agent for the treatment of relapsed disease.


Assuntos
Benzotiazóis/farmacologia , Cistadenocarcinoma Seroso/tratamento farmacológico , Dano ao DNA , Naftiridinas/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/metabolismo , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/farmacologia , Feminino , Xenoenxertos , Recombinação Homóloga , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Modelos Biológicos , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , RNA Polimerase I/antagonistas & inibidores , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...