Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
1.
Affect Sci ; 3(4): 849-861, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36277315

RESUMO

Researchers increasingly use passive sensing data and frequent self-report to implement personalized mobile health (mHealth) interventions. Yet, we know that certain populations may find these technical protocols burdensome and intervention uptake as well as treatment efficacy may be affected as a result. In the present study, we predicted feasibility (participant adherence to protocol) and acceptability (participant engagement with intervention content) as a function of baseline sociodemographic, mental health, and well-being characteristics of 99 women randomized in the personalized preventive intervention Wellness-for-Two (W-4-2), a randomized trial evaluating stress-related alterations during pregnancy and their effect on infant neurodevelopmental trajectories. The W-4-2 study used ecological momentary assessment (EMA) and wearable electrocardiograph (ECG) sensors to detect physiological stress and personalize the intervention. Participant adherence to protocols was 67% for EMAs and 52% for ECG bio-sensors. Higher baseline negative affect significantly predicted lower adherence to both protocols. Women assigned to the intervention group engaged on average with 42% of content they received. Women with higher annual household income were more likely to engage with more of the intervention content. Researchers should carefully consider tailoring of the intensity of technical intervention protocols to reduce fatigue, especially among participants with higher baseline negative affect, which may improve intervention uptake and efficacy findings at scale.

2.
J Chem Phys ; 156(16): 161102, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35490012

RESUMO

Patchy colloids with three and four equivalent patches, confined in an attractive random porous medium, undergo re-entrant gas-liquid phase separation with the liquid phase density approaching zero at low temperatures. The (bonding) colloid-colloid interaction causes the liquid-gas phase separation, which is modulated by the presence of the randomly distributed hard-sphere obstacles, attracting the colloids via Yukawa potential. Due to this interaction, a layer of mutually bonded colloids around the obstacles is formed. The network becomes nonuniform, with colloid particles locally centered on the obstacles. Features described in this article may open possibilities to produce equilibrium gels with predefined nonuniform distribution of particles and indicate how complicated the phase behavior of biological macromolecules in a crowded environment may be.

3.
J Shoulder Elbow Surg ; 29(1): 157-166, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31401128

RESUMO

BACKGROUND: The purpose of this study was to evaluate the biomechanical and histologic properties of rotator cuff repairs using a vented anchor attached to a bioresorbable interpositional scaffold composed of aligned PLGA (poly(l-lactide-co-glycoside)) microfibers in an animal model compared to standard anchors in an ovine model. METHODS: Fifty-six (n = 56) skeletally mature sheep were randomly assigned to a repair of an acute infraspinatus tendon detachment using a innovative anchor-PLGA scaffold device (Treatment) or a similar anchor without the scaffold (Control). Animals were humanely euthanized at 7 and 12 weeks post repair. Histologic and biomechanical properties of the repairs were evaluated and compared. RESULTS: The Treatment group had a significantly higher fibroblast count at 7 weeks compared to the Control group. The tendon bone repair distance, percentage perpendicular fibers, new bone formation at the tendon-bone interface, and collagen type III deposition was significantly greater for the Treatment group compared with the Control group at 12 weeks (P ≤ .05). A positive correlation was identified in the Treatment group between increased failure loads at 12 weeks and the following parameters: tendon-bone integration, new bone formation, and collagen type III. No statistically significant differences in biomechanical properties were identified between Treatment and Control Groups (P > .05). CONCLUSIONS: Use of a vented anchor attached to a bioresorbable interpositional scaffold composed of aligned PLGA microfibers improves the histologic properties of rotator cuff repairs in a sheep model. Improved histology was correlated with improved final construct strength at the 12-week time point.


Assuntos
Osso e Ossos/fisiologia , Lesões do Manguito Rotador/cirurgia , Tendões/fisiologia , Alicerces Teciduais , Cicatrização , Implantes Absorvíveis , Animais , Materiais Biocompatíveis/uso terapêutico , Fenômenos Biomecânicos , Osso e Ossos/cirurgia , Contagem de Células , Colágeno Tipo III/metabolismo , Modelos Animais de Doenças , Feminino , Fibroblastos , Osteogênese , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/uso terapêutico , Estudos Prospectivos , Lesões do Manguito Rotador/patologia , Ovinos , Técnicas de Sutura , Tendões/cirurgia
4.
J Vis Exp ; (130)2017 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-29286470

RESUMO

This article describes the steps for construction of a DNA library from soil, preparation and use of the nanopore flow cell, and analysis of the DNA sequences identified using computer software. Nanopore DNA sequencing is a flexible technique that allows for rapid microbial genome sequencing to identify bacterial and viral species, to characterize bacterial strains, and to detect genetic mutations that confer resistance to antibiotics. The advantages of nanopore sequencing (NS) for life sciences include its low complexity, reduced cost, and rapid real-time sequencing of purified genomic DNA, PCR amplicons, cDNA samples, or RNA. NS is an example of "strand sequencing" which involves sequencing DNA by guiding a single stranded DNA molecule through a nanopore that is inserted into a synthetic polymer membrane. The membrane has an electrical current applied across it, so as the individual bases pass through the nanopore the electrical current is disrupted to varying degrees by the four nucleotide bases. The identification of each nucleotide occurs by detecting the characteristic modulation of the electrical current by the different bases as they pass through the nanopore. The NS system consists of a handheld, USB powered portable device and a disposable flow cell that contains a nanopore array. The portable device plugs into a standard laptop computer that reads and records the DNA sequence using computer software.


Assuntos
Metagenômica/métodos , Nanoporos , Análise de Sequência de DNA/métodos , Solo/química
5.
Phys Rev Lett ; 117(9): 094801, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610860

RESUMO

Annular quasimonoenergetic electron beams with a mean energy in the range 200-400 MeV and charge on the order of several picocoulombs were generated in a laser wakefield accelerator and subsequently accelerated using a plasma afterburner in a two-stage gas cell. Generation of these beams is associated with injection occurring on the density down ramp between the stages. This well-localized injection produces a bunch of electrons performing coherent betatron oscillations in the wakefield, resulting in a significant increase in the x-ray yield. Annular electron distributions are detected in 40% of shots under optimal conditions. Simultaneous control of the pulse duration and frequency chirp enables optimization of both the energy and the energy spread of the annular beam and boosts the radiant energy per unit charge by almost an order of magnitude. These well-defined annular distributions of electrons are a promising source of high-brightness laser plasma-based x rays.

6.
J Phys Condens Matter ; 28(41): 414011, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27545613

RESUMO

The approach developed earlier to describe the dimerizing shielded attractive shell (SAS) primitive model of chemical association due to Cummings and Stell is generalized and extended to include a description of a polymerizing SAS model. Our extension is based on the combination of the resummed thermodynamic perturbation theory for central force (RTPT-CF) associating potential and self consistent scheme, which takes into account the changes in the system free volume due to association. Theoretical results for thermodynamical properties of the model at different bonding length, density and temperature are compared against newly generated computer simulation results. The theory gives very accurate predictions for the model with bonding length L (*) from the range 0 < L (*) < 0.6 at all values of the density and temperature studied, including the limit of infinitely large temperature.

7.
J Chem Phys ; 143(4): 044904, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26233161

RESUMO

We propose an analytical solution of the multi-density Ornstein-Zernike equation supplemented by the associative Percus-Yevick closure relations specifically designed to describe the equilibrium properties of the novel class of patchy colloidal particles represented by the inverse patchy colloids with arbitrary number of patches. Using Baxter's factorization method, we reduce solution of the problem to the solution of one nonlinear algebraic equation for the fraction of the particles with one non-bonded patch. We present closed-form expressions for the structure (structure factor) and thermodynamic (internal energy) properties of the system in terms of this fraction (and parameters of the model). We perform computer simulation studies and compare theoretical and computer simulation predictions for the pair distribution function, internal energy, and number of single and double bonds formed in the system, for two versions of the model, each with two and three patches. We consider the models with formation of the double bonds blocked by the patch-patch repulsion and the models without patch-patch repulsion. In general very good agreement between theoretical and computer simulation results is observed.

9.
J Phys Chem Lett ; 5(24): 4260-4, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26273972

RESUMO

The lack of a simple analytical description of the hard-sphere fluid in a matrix with hard-core obstacles is limiting progress in the development of thermodynamic perturbation theories for the fluid in random porous media. We propose a simple and highly accurate analytical scheme, which allows us to calculate thermodynamic and percolation properties of a network-forming fluid confined in the random porous media, represented by the hard-sphere fluid and overlapping hard-sphere matrices, respectively. Our scheme is based on the combination of scaled-particle theory, Wertheim's thermodynamic perturbation theory for associating fluids and extension of the Flory-Stockmayer theory for percolation. The liquid-gas phase diagram and percolation threshold line for several versions of the patchy colloidal fluid model confined in a random porous media are calculated and discussed. The method presented enables calculation of the thermodynamic and percolation properties of a large variety of polymerizing and network-forming fluids confined in random porous media.

10.
J Chem Phys ; 139(23): 234902, 2013 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24359388

RESUMO

Adsorption of flexible oligomers into narrow cylindrical pores has been studied by means of several versions of classical density functional theory (CDFT) and Monte Carlo simulation. The adsorption process is interesting to study due to the competition between the entropic depletion of oligomers from the pores and the wall-oligomer attraction. It is also challenging to describe using current CDFTs, which tend to overestimate the amount of the adsorbed fluid. From a comparison of several different CDFT approaches, we find that this is due to the assumption of ideal or freely jointed chain conformations. Moreover, it is demonstrated that it is impossible to obtain a reasonable description of the adsorption isotherms without taking into account accurate contact values in the distribution functions describing the structure of the reference monomer fluid. At low densities, more accurate result are obtained in comparison with Monte Carlo simulation data when accurate contact values are incorporated into the theory rather than the more commonly used hard-sphere contact value. However, even the CDFT with accurate contact values still overestimates the amount of the adsorbed fluid due to the ideal or freely jointed chain approximation, used for the description of chain conformations in most CDFT approaches. We find that significant improvement can achieved by employing self-consistent field theory, which samples self-avoiding chain conformations and decreases the number of possible chain conformations, and, consequently, the amount of the adsorbed fluid.

11.
J Chem Phys ; 139(10): 104905, 2013 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-24050363

RESUMO

We propose a second-order thermodynamic perturbation theory for a hard-sphere patchy colloidal model with two doubly bondable patches of type A and B. AB bonding results in the formation of a three-dimensional network of the particles and AA and BB bonding promotes chain formation. The theory is applied to study the phase behaviour of the model at different values of the potential model parameters. Competition between network and chain formation gives rise to a re-entrant phase behaviour with upper and lower critical points. The model with an additional van der Waals type of interaction may have a re-entrant phase diagram with three critical points and two separate regions of the liquid-gas phase coexistence. We analyze our results in terms of the fractions of the particles in different bonding states and conclude that re-entrant phase coexistence can be seen as a coexistence between a gas phase rich in chain ends and a liquid phase rich in branch points.

12.
J Chem Phys ; 139(4): 044909, 2013 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-23902021

RESUMO

We propose a second-order version of the resummed thermodynamic perturbation theory for patchy colloidal models with arbitrary number of multiply bondable patches. The model is represented by the hard-sphere fluid system with several attractive patches on the surface and resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. The theory represents an extension of the earlier proposed first order resummed thermodynamic perturbation theory for central force associating potential and takes into account formation of the rings of the particles. In the limiting case of singly bondable patches (total blockage), the theory reduces to Wertheim thermodynamic perturbation theory for associating fluids. Closed-form expressions for the Helmholtz free energy, pressure, internal energy, and chemical potential of the model with an arbitrary number of equivalent doubly bondable patches are derived. Predictions of the theory for the model with two patches appears to be in a very good agreement with predictions of new NVT and NPT Monte Carlo simulations, including the region of strong association.

13.
Phys Rev Lett ; 110(17): 175002, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679739

RESUMO

Coherent x-ray beams with a subfemtosecond (<10(-15) s) pulse duration will enable measurements of fundamental atomic processes in a completely new regime. High-order harmonic generation (HOHG) using short pulse (<100 fs) infrared lasers focused to intensities surpassing 10(18) W cm(-2) onto a solid density plasma is a promising means of generating such short pulses. Critical to the relativistic oscillating mirror mechanism is the steepness of the plasma density gradient at the reflection point, characterized by a scale length, which can strongly influence the harmonic generation mechanism. It is shown that for intensities in excess of 10(21) W cm(-2) an optimum density ramp scale length exists that balances an increase in efficiency with a growth of parametric plasma wave instabilities. We show that for these higher intensities the optimal scale length is c/ω0, for which a variety of HOHG properties are optimized, including total conversion efficiency, HOHG divergence, and their power law scaling. Particle-in-cell simulations show striking evidence of the HOHG loss mechanism through parametric instabilities and relativistic self-phase modulation, which affect the produced spectra and conversion efficiency.

14.
J Chem Phys ; 137(24): 244910, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23277959

RESUMO

We propose an improved version of Wertheim's first order thermodynamic perturbation theory for the square-well m-point model of patchy colloids. Our version of the theory takes into account changes in the free volume of the system due to bond formation. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model.

15.
J Chem Phys ; 135(1): 014501, 2011 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-21744904

RESUMO

A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is extended for the fluid with multiple number of multiply bondable associating sites. We consider a multi-patch hard-sphere model for associating fluids. The model is represented by the hard-sphere fluid system with several spherical attractive patches on the surface of each hard sphere. Resummation is carried out to account for blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the models with arbitrary number of doubly bondable patches at all degrees of the blockage are presented. In the limiting case of total blockage, when the patches become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory (TPT) for polymerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. In general, predictions of the present theory are in good agreement with values for the model calculated using Monte Carlo simulations, i.e., the accuracy of our theory in the case of the models with multiply bondable sites is similar to that of Wertheim's TPT in the case of the models with singly bondable sites.

16.
Langmuir ; 27(14): 8700-9, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21648451

RESUMO

Two different terminations of the (1010) surface of quartz (α and ß) interacting with water are simulated by classical (CMD) (using two different force fields) and ab initio molecular dynamics (AIMD) and compared with previously published X-ray reflectivity (XR) experiments. Radial distribution functions between hydroxyl and water show good agreement between AIMD and CMD using the ClayFF force field for both terminations. The Lopes et al. (Lopes, P. E. M.; Murashov, V.; Tazi, M.; Demchuk, E.; MacKerell, A. D. J. Phys. Chem. B2006, 110, 2782-2792) force field (LFF), however, underestimates the extent of hydroxyl-water hydrogen bonding. The ß termination is found to contain hydroxyl-hydroxyl hydrogen bonds; the quartz surface hydroxyl hydrogens and oxygens that hydrogen bond with each other exhibit greatly reduced hydrogen bonding to water. Conversely, the hydroxyl hydrogen and oxygens that are not hydrogen bonded to other surface hydroxyls but are connected to those that are show a considerable amount of hydrogen bonding to water. The electron density distribution of an annealed surface of quartz (1010) obtained by XR is in qualitative agreement with electron densities calculated by CMD and AIMD. In all simulation methods, the interfacial water peak appears farther from the surface than observed by XR. Agreement among AIMD, LFF, and XR is observed for the relaxation of the near-surface atoms; however, ClayFF shows a larger discrepancy. Overall, results show that for both terminations of (1010), LFF treats the near-surface structure more accurately whereas ClayFF treats the interfacial water structure more accurately. It is shown that the number of hydroxyl and water hydrogen bonds to the bridging Si-O-Si oxygens connecting the surface silica groups to the rest of the crystal is much greater for the α than the ß termination. It is suggested that this may play a role in the greater resistance to dissolution of the ß termination than that of the α termination.


Assuntos
Simulação de Dinâmica Molecular , Quartzo/química , Água/química , Conformação Molecular , Teoria Quântica , Propriedades de Superfície
17.
J Synchrotron Radiat ; 18(Pt 2): 257-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21335914

RESUMO

A method for comparing pixelated density profiles (e.g. obtained from molecular dynamics or other computational techniques) with experimental X-ray reflectivity data both directly and quantitatively is described. The conditions under which such a comparison can be made quantitatively (e.g. with errors <1%) are determined theoretically by comparing calculated structure factors for an intrinsic continuous density profile with those obtained from density profiles that have been binned into regular spatial increments. The accuracy of the X-ray reflectivity calculations for binned density profiles is defined in terms of the inter-relationships between resolution of the X-ray reflectivity data (i.e. its range in momentum transfer), the chosen bin size and the width of the intrinsic density profile. These factors play a similar role in the application of any structure-factor calculations that involve the use of pixelated density profiles, such as those obtained from iterative phasing algorithms for inverting structures from X-ray reflectivity and coherent diffraction imaging data. Finally, it is shown how simulations of a quartz-water interface can be embedded into an exact description of the `bulk' phases (including the substrate crystal and the fluid water, below and above the actual interface) to quantitatively reproduce the experimental reflectivity data of a solid-liquid interface.


Assuntos
Simulação de Dinâmica Molecular , Difração de Raios X/métodos , Modelos Moleculares , Quartzo/química , Propriedades de Superfície , Água/química , Raios X
18.
Inj Prev ; 17(3): 156-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20889519

RESUMO

OBJECTIVE: To estimate the association between wearing a personal floatation device (PFD) and death by drowning among recreational boaters. DESIGN: Matched cohort study analysis of Coast Guard data. SETTING: United States. SUBJECTS: Recreational boaters during 2000-2006. MAIN OUTCOME MEASURES: Risk ratio (RR) for drowning death comparing boaters wearing a PFD with boaters not wearing a PFD. RESULTS: Approximately 4915 boater records from 1809 vessels may have been eligible for our study, but because of missing records and other problems, the analysis was restricted to 1597 boaters in 625 vessels with 878 drowning deaths. The adjusted RR was 0.51 (95% CI 0.35 to 0.74). CONCLUSIONS: If the estimated association is causal, wearing a PFD may potentially prevent one in two drowning deaths among recreational boaters. However, this estimate may be biased because many vessels had to be excluded from the analysis.


Assuntos
Afogamento/mortalidade , Equipamentos de Proteção/estatística & dados numéricos , Navios , Adolescente , Adulto , Distribuição por Idade , Idoso , Afogamento/prevenção & controle , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recreação , Projetos de Pesquisa , Fatores de Risco , Navios/estatística & dados numéricos , Estados Unidos/epidemiologia , Adulto Jovem
19.
Phys Rev Lett ; 105(3): 034801, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20867770

RESUMO

Stimulated Raman side scattering of an ultrashort high power laser pulse is studied in experiments on laser wakefield acceleration. Experiments and simulations reveal that stimulated Raman side scattering occurs at the beginning of the interaction, that it contributes to the evolution of the pulse prior to wakefield formation, and also that it affects the quality of electron beams generated. The relativistic shift of the plasma frequency is measured.

20.
J Chem Phys ; 133(4): 044502, 2010 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-20687658

RESUMO

A resummed thermodynamic perturbation theory for associating fluids with multiply bondable central force associating potential is proposed. We consider a simple one-patch model for associating fluids. The model is represented by the hard-sphere system with a circular attractive patch on the surface of each hard-sphere. Resummation is carried out to account for the blocking effects, i.e., when the bonding of a particle restricts (blocks) its ability to bond with other particles. Closed form analytical expressions for thermodynamical properties (Helmholtz free energy, pressure, internal energy, and chemical potential) of the model with a doubly bondable patch at all degrees of the blockage are presented. In the limiting case of total blockage, when the particles become only singly bondable, our theory reduces to Wertheim's thermodynamic perturbation theory for dimerizing fluids. To validate the accuracy of the theory we compare to exact values, for the thermodynamical properties of the system, as determined by Monte Carlo computer simulations. In addition we compare the fraction of multiply bonded particles at different values of the density and temperature. Very good agreement between predictions of the theory, corrected for ring formation, and Monte Carlo computer simulation values was found in all cases studied. Less accurate are the original versions of the theory and Wertheim's thermodynamic perturbation theory for dimerization, especially at lower temperatures and larger sizes of the attractive patch.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...