Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Tissue Res ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878176

RESUMO

In this study, the complex organization of the AnG in the giant freshwater prawn Macrobrachium rosenbergii was revealed using various techniques, including conventional histology, histochemistry, scanning electron microscopy, and X-ray tomography. The results showed the diversity of cells in the AnG and the detailed organization of the labyrinth's tubule into four radiated areas from the central to peripheral zones. The study also demonstrated the expression of some vertebrate kidney-associated homolog genes, aquaporin (AQP), solute carrier family 22 (SLC-22), nephrin, and uromodulin, in the AnG by qPCR. The result of in situ hybridization further showed the localization of SLC-22 and AQP transcript in the bladder and labyrinth's epithelium, specifically in regions 2, 3, and 4. Additionally, the study revealed neuropeptide expressions in the AnG by qPCR and in situ hybridization, i.e., crustacean hyperglycemic hormone (CHH) and molt inhibiting hormone (MIH), implying that the AnG may have a role in hormone production. Moreover, male and female prawns exhibited different levels of AQP, SLC-22, nephrin, and CHH expressions during the premolt and intermolt stages, suggesting a crucial role relevant to the molting stages. In conclusion, this study clarified the complex structure of the AnG in M. rosenbergii and demonstrated for the first time the expression of vertebrate kidney-associated genes and the possible endocrine role of the AnG. Further investigation is needed to clarify the role of these genes, particularly during ecdysis. The implications of these findings could significantly advance our understanding of the AnG in decapod crustaceans.

2.
J Fish Biol ; 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747400

RESUMO

Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.

3.
Chemistry ; 30(33): e202400933, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609334

RESUMO

A relaxin-like gonad-stimulating peptide (RGP), Aso-RGP, featuring six cysteine residues, was identified in the Crown-of-Thorns Starfish (COTS, Acanthaster cf. solaris) and initially produced through recombinant yeast expression. This method yielded a single-chain peptide with an uncleaved C-peptide (His Tag) and suboptimal purity. Our objective was to chemically synthesize Aso-RGP in its mature form, comprising two chains (A and B) and three disulfide bridges, omitting the C-peptide. Furthermore, we aimed to synthesize a newly identified relaxin-like peptide, Aso-RLP2, from COTS, which had not been previously synthesized. This paper reports the first total chemical synthesis of Aso-RGP and Aso-RLP2. Aso-RGP synthesis proceeded without major issues, whereas the A-chain of Aso-RLP2, in its reduced and unfolded state with two free thiols, presented considerable challenges. These were initially marked by "messy" RP-HPLC profiles, typically indicative of synthesis failure. Surprisingly, oxidizing the A-chain significantly improved the RP-HPLC profile, revealing the main issue was not synthesis failure but the peptide's aggregation tendency, which initially obscured analysis. This discovery highlights the critical need to account for aggregation in peptide synthesis and analysis. Ultimately, our efforts led to the successful synthesis of both peptides with purities exceeding 95 %.


Assuntos
Dissulfetos , Peptídeos , Estrelas-do-Mar , Estrelas-do-Mar/química , Dissulfetos/química , Peptídeos/química , Peptídeos/síntese química , Animais , Cromatografia Líquida de Alta Pressão , Sequência de Aminoácidos , Cisteína/química , Oxirredução
4.
Front Endocrinol (Lausanne) ; 15: 1348465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444586

RESUMO

G protein-coupled receptors (GPCRs) are an ancient family of signal transducers that are both abundant and consequential in metazoan endocrinology. The evolutionary history and function of the GPCRs of the decapod superfamilies of gonadotropin-releasing hormone (GnRH) are yet to be fully elucidated. As part of which, the use of traditional phylogenetics and the recycling of a diminutive set of mis-annotated databases has proven insufficient. To address this, we have collated and revised eight existing and three novel GPCR repertoires for GnRH of decapod species. We developed a novel bioinformatic workflow that included clustering analysis to capture likely GnRH receptor-like proteins, followed by phylogenetic analysis of the seven transmembrane-spanning domains. A high degree of conservation of the sequences and topology of the domains and motifs allowed the identification of species-specific variation (up to ~70%, especially in the extracellular loops) that is thought to be influential to ligand-binding and function. Given the key functional role of the DRY motif across GPCRs, the classification of receptors based on the variation of this motif can be universally applied to resolve cryptic GPCR families, as was achieved in this work. Our results contribute to the resolution of the evolutionary history of invertebrate GnRH receptors and inform the design of bioassays in their deorphanization and functional annotation.


Assuntos
Decápodes , Hormônio Liberador de Gonadotropina , Animais , Filogenia , Receptores Acoplados a Proteínas G/genética , Bioensaio
5.
J Phycol ; 60(2): 327-342, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38156746

RESUMO

The sub-tropical red seaweed Asparagopsis taxiformis is of significant interest due to its ability to store halogenated compounds, including bromoform, which can mitigate methane production in ruminants. Significant scale-up of aquaculture production of this seaweed is required; however, relatively little is known about the molecular mechanisms that control fundamental physiological processes, including the regulatory factors that determine sexual dimorphism in gametophytes. In this study, we used comparative RNA-sequencing analysis between different morphological parts of mature male and female A. taxiformis (lineage 6) gametophytes that resulted in greater number of sex-biased gene expression in tips (containing the reproductive structures for both sexes), compared with the somatic main axis and rhizomes. Further comparative RNA-seq against immature tips was used to identify 62 reproductive sex-biased genes (59 male-biased, 3 female-biased). Of the reproductive male-biased genes, 46% had an unknown function, while others were predicted to be regulatory factors and enzymes involved in signaling. We found that bromoform content obtained from female samples (8.5 ± 1.0 mg·g-1 dry weight) was ~10% higher on average than that of male samples (6.5 ± 1.0 mg·g-1 dry weight), although no significant difference was observed (p > 0.05). There was also no significant difference in the marine bromoform biosynthesis locus gene expression. In summary, our comparative RNA-sequencing analysis provides a first insight into the potential molecular factors relevant to gametogenesis and sexual differentiation in A. taxiformis, with potential benefits for identification of sex-specific markers.


Assuntos
Células Germinativas Vegetais , Rodófitas , Alga Marinha , Animais , Alga Marinha/genética , Expressão Gênica , RNA , Trialometanos
6.
PeerJ ; 11: e15689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637177

RESUMO

Background: The crown-of-thorns starfish (COTS; Acanthaster species) is a slow-moving corallivore protected by an extensive array of long, sharp toxic spines. Envenomation can result in nausea, numbness, vomiting, joint aches and sometimes paralysis. Small molecule saponins and the plancitoxin proteins have been implicated in COTS toxicity. Methods: Brine shrimp lethality assays were used to confirm the secretion of spine toxin biomolecules. Histological analysis, followed by spine-derived proteomics helped to explain the source and identity of proteins, while quantitative RNA-sequencing and phylogeny confirmed target gene expression and relative conservation, respectively. Results: We demonstrate the lethality of COTS spine secreted biomolecules on brine shrimp, including significant toxicity using aboral spine semi-purifications of >10 kDa (p > 0.05, 9.82 µg/ml), supporting the presence of secreted proteins as toxins. Ultrastructure observations of the COTS aboral spine showed the presence of pores that could facilitate the distribution of secreted proteins. Subsequent purification and mass spectrometry analysis of spine-derived proteins identified numerous secretory proteins, including plancitoxins, as well as those with relatively high gene expression in spines, including phospholipase A2, protease inhibitor 16-like protein, ependymin-related proteins and those uncharacterized. Some secretory proteins (e.g., vitellogenin and deleted in malignant brain tumor protein 1) were not highly expressed in spine tissue, yet the spine may serve as a storage or release site. This study contributes to our understanding of the COTS through functional, ultrastructural and proteomic analysis of aboral spines.


Assuntos
Artemia , Proteômica , Animais , Artralgia , Bioensaio , Transporte Biológico
8.
Toxins (Basel) ; 15(3)2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36977061

RESUMO

The relative lack of marine venom pharmaceuticals can be anecdotally attributed to difficulties in working with venomous marine animals, including how to maintain venom bioactivity during extraction and purification. The primary aim of this systematic literature review was to examine the key factors for consideration when extracting and purifying jellyfish venom toxins to maximise their effectiveness in bioassays towards the characterisation of a single toxin.An up-to-date database of 119 peer-reviewed research articles was established for all purified and semi-purified venoms across all jellyfish, including their level of purification, LD50, and the types of experimental toxicity bioassay used (e.g., whole animal and cell lines). We report that, of the toxins successfully purified across all jellyfish, the class Cubozoa (i.e., Chironex fleckeri and Carybdea rastoni) was most highly represented, followed by Scyphozoa and Hydrozoa. We outline the best practices for maintaining jellyfish venom bioactivity, including strict thermal management, using the "autolysis" extraction method and two-step liquid chromatography purification involving size exclusion chromatography. To date, the box jellyfish C. fleckeri has been the most effective jellyfish venom model with the most referenced extraction methods and the most isolated toxins, including CfTX-A/B. In summary, this review can be used as a resource for the efficient extraction, purification, and identification of jellyfish venom toxins.


Assuntos
Venenos de Cnidários , Cubomedusas , Cifozoários , Animais , Venenos de Cnidários/química , Cifozoários/metabolismo , Linhagem Celular , Cromatografia em Gel
9.
Sci Rep ; 13(1): 3349, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849815

RESUMO

The nervous system of the Asteroidea (starfish or seastar) consists of radial nerve cords (RNCs) that interconnect with a ring nerve. Despite its relative simplicity, it facilitates the movement of multiple arms and numerous tube feet, as well as regeneration of damaged limbs. Here, we investigated the RNC ultrastructure and its molecular components within the of Pacific crown-of-thorns starfish (COTS; Acanthaster sp.), a well-known coral predator that in high-density outbreaks has major ecological impacts on coral reefs. We describe the presence of an array of unique small bulbous bulbs (40-100 µm diameter) that project from the ectoneural region of the adult RNC. Each comprise large secretory-like cells and prominent cilia. In contrast, juvenile COTS and its congener Acanthaster brevispinus lack these features, both of which are non-corallivorous. Proteomic analysis of the RNC (and isolated neural bulbs) provides the first comprehensive echinoderm protein database for neural tissue, including numerous secreted proteins associated with signalling, transport and defence. The neural bulbs contained several neuropeptides (e.g., bombyxin-type, starfish myorelaxant peptide, secretogranin 7B2-like, Ap15a-like, and ApNp35) and Deleted in Malignant Brain Tumor 1-like proteins. In summary, this study provides a new insight into the novel traits of COTS, a major pest on coral reefs, and a proteomics resource that can be used to develop (bio)control strategies and understand molecular mechanisms of regeneration.


Assuntos
Distrofias de Cones e Bastonetes , Tecido Nervoso , Animais , Nervo Radial , Proteômica , Estrelas-do-Mar , Equinodermos
10.
Front Endocrinol (Lausanne) ; 14: 1020368, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814576

RESUMO

Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioural stress in vertebrate and urochordate models, yet despite numerous studies in higher animals, there is limited knowledge of its role in invertebrates. In particular, there are no studies on TCAP's effects on the heart of any metazoan, which is a critical organ in the stress response. We used the Sydney rock oyster (SRO) as an invertebrate model to investigate a potential role for sroTCAP in regulating cardiac activity, including during stress. sroTCAP is localized to the neural innervation network of the SRO heart, and suggested binding with various heart proteins related to metabolism and stress, including SOD, GAPDH and metabotropic glutamate receptor. Intramuscular injection of sroTCAP (10 pmol) significantly altered the expression of heart genes that are known to regulate remodelling processes under different conditions, and modulated several gene families responsible for stress mitigation. sroTCAP (1 and 10 pmol) was shown to cause transient bradycardia (heart rate was reduced by up to 63% and for up to 40 min post-administration), indicative of an unstressed state. In summary, this study has established a role for a TCAP in the regulation of cardiac activity through modulation of physiological and molecular components associated with energy conservation, stress and adaptation. This represents a novel function for TCAP and may have implications for higher-order metazoans.


Assuntos
Acetofenonas , Peptídeos , Animais , Peptídeos/genética
11.
Biology (Basel) ; 12(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36829446

RESUMO

The red seaweed Asparagopsis taxiformis is a promising ruminant feed additive with anti-methanogenic properties that could contribute to global climate change solutions. Genomics has provided a strong foundation for in-depth molecular investigations, including proteomics. Here, we investigated the proteome of A. taxiformis (Lineage 6) in both sporophyte and gametophyte stages, using soluble and insoluble extraction methods. We identified 741 unique non-redundant proteins using a genome-derived database and 2007 using a transcriptome-derived database, which included numerous proteins predicted to be of fungal origin. We further investigated the genome-derived proteins to focus on seaweed-specific proteins. Ontology analysis indicated a relatively large proportion of ion-binding proteins (i.e., iron, zinc, manganese, potassium and copper), which may play a role in seaweed heavy metal tolerance. In addition, we identified 58 stress-related proteins (e.g., heat shock and vanadium-dependent haloperoxidases) and 44 photosynthesis-related proteins (e.g., phycobilisomes, photosystem I, photosystem II and ATPase), which were in general more abundantly identified from female gametophytes. Forty proteins were predicted to be secreted, including ten rhodophyte collagen-alpha-like proteins (RCAPs), which displayed overall high gene expression levels. These findings provide a comprehensive overview of expressed proteins in A. taxiformis, highlighting the potential for targeted protein extraction and functional characterisation for future biodiscovery.

12.
Mar Drugs ; 22(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38276641

RESUMO

Rhodophytes (red algae) are an important source of natural products and are, therefore, a current research focus in terms of metabolite production. The recent increase in publicly available Rhodophyte whole genome and transcriptome assemblies provides the resources needed for in silico metabolic pathway analysis. Thus, this study aimed to create a Rhodophyte multi-omics resource, utilising both genomes and transcriptome assemblies with functional annotations to explore Rhodophyte metabolism. The genomes and transcriptomes of 72 Rhodophytes were functionally annotated and integrated with metabolic reconstruction and phylogenetic inference, orthology prediction, and gene duplication analysis to analyse their metabolic pathways. This resource was utilised via two main investigations: the identification of bioactive sterol biosynthesis pathways and the evolutionary analysis of gene duplications for known enzymes. We report that sterol pathways, including campesterol, ß-sitosterol, ergocalciferol and cholesterol biosynthesis pathways, all showed incomplete annotated pathways across all Rhodophytes despite prior in vivo studies showing otherwise. Gene duplication analysis revealed high rates of duplication of halide-associated haem peroxidases in Florideophyte algae, which are involved in the biosynthesis of drug-related halogenated secondary metabolites. In summary, this research revealed trends in Rhodophyte metabolic pathways that have been under-researched and require further functional analysis. Furthermore, the high duplication of haem peroxidases and other peroxidase enzymes offers insight into the potential drug development of Rhodophyte halogenated secondary metabolites.


Assuntos
Multiômica , Rodófitas , Filogenia , Rodófitas/genética , Transcriptoma/genética , Peroxidases/genética , Esteróis , Heme
14.
Biology (Basel) ; 11(10)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36290362

RESUMO

Seaweeds are multicellular marine macroalgae with natural compounds that have potential anticancer activity. To date, the identification of those compounds has relied on purification and assay, yet few have been documented. Additionally, the genomes and associated proteomes of edible seaweeds that have been identified thus far are scattered among different resources and with no systematic summary available, which hinders the development of a large-scale omics analysis. To enable this, we constructed a comprehensive genomics resource for the edible seaweeds. These data could be used for systematic metabolomics and a proteome search for anti-cancer compound and peptides. In brief, we integrated and annotated 12 publicly available edible seaweed genomes (8 species and 268,071 proteins). In addition, we integrate the new seaweed genomic resources with established cancer bioinformatics pipelines to help identify potential seaweed proteins that could help mitigate the development of cancer. We present 7892 protein domains that were predicted to be associated with cancer proteins based on a protein domain-domain interaction. The most enriched protein families were associated with protein phosphorylation and insulin signalling, both of which are recognised to be crucial molecular components for patient survival in various cancers. In addition, we found 6692 seaweed proteins that could interact with over 100 tumour suppressor proteins, of which 147 are predicted to be secreted proteins. In conclusion, our genomics resource not only may be helpful in exploring the genomics features of these edible seaweed but also may provide a new avenue to explore the molecular mechanisms for seaweed-associated inhibition of human cancer development.

15.
Front Immunol ; 13: 954282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300127

RESUMO

Schistosomiasis, caused by infection with Schistosoma digenetic trematodes, is one of the deadliest neglected tropical diseases in the world. The Schistosoma lifecycle involves the miracidial infection of an intermediate freshwater snail host, such as Biomphalaria glabrata. Dispersing snail host-derived Schistosoma miracidia attractants has been considered a method of minimising intermediate host infections and, by extension, human schistosomiasis. The attractiveness of B. glabrata to miracidia is known to be reduced following infection; however, the relationship between duration of infection and attractiveness is unclear. Excretory-secretory proteins (ESPs) most abundant in attractive snail conditioned water (SCW) are key candidates to function as miracidia attractants. This study analysed SCW from B. glabrata that were naïve (uninfected) and at different time-points post-miracidia exposure (PME; 16h, 1-week, 2-weeks and 3-weeks PME) to identify candidate ESPs mediating Schistosoma mansoni miracidia behaviour change, including aggregation and chemoklinokinesis behaviour (random motion, including slowdown and increased turning rate and magnitude). Miracidia behaviour change was only observed post-addition of naïve and 3W-PME SCW, with other treatments inducing significantly weaker behaviour changes. Therefore, ESPs were considered attractant candidates if they were shared between naïve and 3W-PME SCW (or exclusive to the former), contained a predicted N-terminal signal peptide and displayed low identity (<50%) to known proteins outside of the Biomphalaria genus. Using these criteria, a total of 6 ESP attractant candidates were identified, including acetylcholine binding protein-like proteins and uncharacterised proteins. Tissue-specific RNA-seq analysis of the genes encoding these 6 ESPs indicated relatively high gene expression within various B. glabrata tissues, including the foot, mantle and kidney. Acetylcholine binding protein-like proteins were highly promising due to their high abundance in naïve and 3W-PME SCW, high specificity to B. glabrata and high expression in the ovotestis, from which attractants have been previously identified. In summary, this study used proteomics, guided by behavioural assays, to identify miracidia attractant candidates that should be further investigated as potential biocontrols to disrupt miracidia infection and minimise schistosomiasis.


Assuntos
Biomphalaria , Esquistossomose , Animais , Humanos , Biomphalaria/metabolismo , Schistosoma mansoni , Proteômica , Acetilcolina/metabolismo , Caramujos , Proteínas/metabolismo , Água , Sinais Direcionadores de Proteínas
16.
Heliyon ; 8(9): e10516, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36119877

RESUMO

Insects of different orders produce elaborate structures to protect their eggs from the many threats they may face from the environment and natural enemies. In the weevil genus Gonipterus, their dark, hardened egg capsule is possibly generated by a mixture of the insects' excrement and glandular substances. To test this hypothesis, this study focused on the elucidation of protein components present in the egg capsule cover and interrogated them through comparative analysis and gene expression to help infer potential functions. First, female Gonipterus sp. n. 2 reproductive and alimentary tissues were isolated to establish a reference transcriptome-derived protein database. Then, proteins from weevil frass (excrement) and egg capsule cover were identified through mass spectrometry proteomics. We found that certain egg capsule cover proteins were both exclusive and shared between frass and egg capsule cover, including those of plant origin (e.g. photosystem II protein) and others secreted by the weevil, primarily from reproductive tissue. Among them, a mucin/spidroin-like protein and novel proteins with repetitive units that likely play a structural role were identified. We have confirmed the dual origin of the egg capsule cover substance as a blend of the insects' frass and secretions. Novel proteins secreted by the weevils are key candidates for holding the egg case cover together.

17.
Biology (Basel) ; 11(9)2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36138823

RESUMO

Elucidating the infectivity of Schistosoma mansoni, one of the main etiological agents of human schistosomiasis, requires an improved understanding of the behavioural mechanisms of cercariae, the non-feeding mammalian infective stage. This study investigated the presence and effect of cercariae-derived putative neuropeptides on cercarial behaviour when applied externally. Cercariae were peptidomically analysed and 11 neuropeptide precursor proteins, all of which were specific to the Schistosoma genus and most of which highly expressed in the cercarial stage, were identified in cercariae for the first time. Protein-protein interaction analysis predicted the interaction of various neuropeptide precursors (e.g., Sm-npp-30, Sm-npp-33, Sm-npp-35) with cercarial structural proteins (e.g., myosin heavy chain and titin). In total, nine putative neuropeptides, selected based on their high hydrophobicity and small size (~1 kilodalton), were tested on cercariae (3 mg/mL) in acute exposure (1 min) and prolonged exposure (360 min) behavioural bioassays. The peptides AAYMDLPW-NH2, NRKIDQSFYSYY-NH2, FLLALPSP-OH, and NYLWDTRL-NH2 stimulated acute increases in cercarial spinning, stopping, and directional change during active states. However, only NRKIDQSFYSYY-NH2 caused the same behavioural changes at a lower concentration (0.1 mg/mL). After prolonged exposure, AAYMDLPW-NH2 and NYLWDTRL-NH2 caused increasing passive behaviour and NRKIDQSFYSYY-NH2 caused increasing body-first and head-pulling movements. These findings characterise behaviour-altering novel putative neuropeptides, which may inform future biocontrol innovations to prevent human schistosomiasis.

18.
Front Endocrinol (Lausanne) ; 13: 891714, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784537

RESUMO

Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioral stress in vertebrate and urochordate models. There is little information for invertebrates regarding the existence or function of a TCAP. This study used the Sydney rock oyster (SRO) as a molluscan model to characterize an invertebrate TCAP, from molecular gene analysis to its physiological effects associated with hemocyte phagocytosis. We report a single teneurin gene (and 4 teneurin splice variants), which encodes a precursor with TCAP that shares a vertebrate-like motif, and is similar to that of other molluscan classes (gastropod, cephalopod), arthropods and echinoderms. TCAP was identified in all SRO tissues using western blotting at 1-2 different molecular weights (~22 kDa and ~37kDa), supporting precursor cleavage variation. In SRO hemolymph, TCAP was spatially localized to the cytosol of hemocytes, and with particularly high density immunoreactivity in granules. Based on 'pull-down' assays, the SRO TCAP binds to GAPDH, suggesting that TCAP may protect cells from apoptosis under oxidative stress. Compared to sham injection, the intramuscular administration of TCAP (5 pmol) into oysters modulated their immune system by significantly reducing hemocyte phagocytosis under stress conditions (low salinity and high temperature). TCAP administration also significantly reduced hemocyte reactive oxygen species production at ambient conditions and after 48 h stress, compared to sham injection. Transcriptomic hemocyte analysis of stressed oysters administered with TCAP demonstrated significant changes in expression of genes associated with key metabolic, protective and immune functions. In summary, this study established a role for TCAP in oysters through modulation of physiological and molecular functions associated with energy conservation, stress and cellular defense.


Assuntos
Hemócitos , Ostreidae , Acetofenonas , Animais , Ostreidae/genética , Peptídeos , Filogenia , Transcriptoma
19.
Molecules ; 27(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35807225

RESUMO

Tigilanol tiglate (EBC-46) is a small-molecule natural product under development for the treatment of cancers in humans and companion animals. The drug is currently produced by purification from the Australian rainforest tree Fontainea picrosperma (Euphorbiaceae). As part of a selective-breeding program to increase EBC-46 yield from F. picrosperma plantations, we investigated potential gene biomarkers associated with biosynthesis of EBC-46. Initially, we identified individual plants that were either high (>0.039%) or low EBC-46 (<0.008%) producers, then assessed their differentially expressed genes within the leaves and roots of these two groups by quantitative RNA sequencing. Compared to low EBC-46 producers, high-EBC-46-producing plants were found to have 145 upregulated genes and 101 downregulated genes in leaves and 53 upregulated genes and 82 downregulated genes in roots. Most of these genes were functionally associated with defence, transport, and biosynthesis. Genes identified as expressed exclusively in either the high or low EBC-46-producing plants were further validated by quantitative PCR, showing that cytochrome P450 94C1 in leaves and early response dehydration 7.1 and 2-alkenal reductase in roots were consistently and significantly upregulated in high-EBC-46 producers. In summary, this study has identified biomarker genes that may be used in the selective breeding of F. picrosperma.


Assuntos
Diterpenos , Euphorbiaceae , Marcadores Genéticos , Diterpenos/química , Ésteres/química , Euphorbiaceae/química , Euphorbiaceae/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Melhoramento Vegetal , Folhas de Planta/química , Folhas de Planta/genética , Raízes de Plantas/química , Raízes de Plantas/genética
20.
Sci Rep ; 12(1): 8243, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581232

RESUMO

Schistosomiasis is a medically significant disease caused by helminth parasites of the genus Schistosoma. The schistosome life cycle requires chemically mediated interactions with an intermediate (aquatic snail) and definitive (human) host. Blocking parasite development within the snail stage requires improved understanding of the interactions between the snail host and the Schistosoma water-borne free-living form (miracidium). Innovations in snail genomics and aquatic chemical communication provide an ideal opportunity to explore snail-parasite coevolution at the molecular level. Rhodopsin G protein-coupled receptors (GPCRs) are of particular interest in studying how trematode parasites navigate towards their snail hosts. The potential role of GPCRs in parasites makes them candidate targets for new antihelminthics that disrupt the intermediate host life-cycle stages, thus preventing subsequent human infections. A genomic-bioinformatic approach was used to identify GPCR orthologs between the snail Biomphalaria glabrata and miracidia of its obligate parasite Schistosoma mansoni. We show that 8 S. mansoni rhodopsin GPCRs expressed within the miracidial stage share overall amino acid similarity with 8 different B. glabrata rhodopsin GPCRs, particularly within transmembrane domains, suggesting conserved structural features. These GPCRs include an orphan peptide receptor as well as several with strong sequence homologies with rhabdomeric opsin receptors, a serotonin receptor, a sulfakinin (SK) receptor, an allatostatin-A (buccalin) receptor and an FMRFamide receptor. Buccalin and FMRFa peptides were identified in water conditioned by B. glabrata, and we show synthetic buccalin and FMRFa can stimulate significant rates of change of direction and turn-back responses in S. mansoni miracidia. Ortholog GPCRs were identified in S. mansoni miracidia and B. glabrata. These GPCRs may detect similar ligands, including snail-derived odorants that could facilitate miracidial host finding. These results lay the foundation for future research elucidating the mechanisms by which GPCRs mediate host finding which can lead to the potential development of novel anti-schistosome interventions.


Assuntos
Biomphalaria , Parasitos , Esquistossomose mansoni , Animais , Biomphalaria/genética , Interações Hospedeiro-Parasita , Humanos , Peptídeos , Feromônios , Receptores Acoplados a Proteínas G/genética , Rodopsina/genética , Schistosoma mansoni , Esquistossomose mansoni/parasitologia , Caramujos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...