Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28453, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38601674

RESUMO

The Peruvian Amazonian native cacao faces ongoing challenges that significantly undermine its productivity. Among them, frosty pod rot disease and cadmium accumulation result in losses that need for effective and environmentally safe strategies, such as those based on bacteria. To explore the biological resources in the cacao soil, a descriptive study was conducted to assess the diversity of culturable bacteria across three production districts in the Amazonas region: La Peca, Imaza, and Cajaruro. The study also focused on the functional properties of these bacteria, particularly those related to the major issues limiting cacao cultivation. For this purpose, 90 native bacterial isolates were obtained from the cacao rhizosphere. According to diversity analysis, the community was composed of 19 bacterial genera, with a dominance of the Bacillaceae family and variable distribution among the districts. This variability was statistically supported by the PCoA plots and is related to the pH of the soil environment. The functional assessment revealed that 56.8% of the isolates showed an antagonism index greater than 75% after 7 days of confrontation. After 15 days of confrontation with Moniliophthora roreri, 68.2% of the bacterial population demonstrated this attribute. This capability was primarily exhibited by Bacillus strains. On the other hand, only 4.5% were capable of removing cadmium, highlighting the biocontrol potential of the bacterial community. In addition, some isolates produced siderophores (13.63%), solubilized phosphate (20.45%), and solubilized zinc (4.5%). Interestingly, these traits showed an uneven distribution, which correlated with the divergence found by the beta diversity. Our results revealed a diverse bacterial community inhabiting the Amazonian cacao rhizosphere, showcasing crucial functional properties related to the biocontrol of M. roreri. The information generated serves as a significant resource for the development of further biotechnological tools that can be applied to native Amazonian cacao.

2.
Microorganisms ; 10(11)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363700

RESUMO

Cacao plant cadmium accumulation has become a major concern, especially for small Amazonian producers. A sustainable alternative to address its toxicity is the use of cadmium removal bacteria. In this regard, 138 rhizosphere isolates from cacao were examined. Supported by their phenotypic characterization and in vitro cadmium tolerance, three hypertolerant bacteria were selected and identified as members of the Bacillus (S1C2, R1C2) and Pseudomonas (V3C3) genera. They were able to grow normally and reduce the cadmium content under in vitro conditions. However, only S1C2 and R1C2 evidenced to employ intracellular Cd2+ accumulation, suggesting the variability of bacterial detoxification mechanisms. Their bioremediation capacity for Theobroma cacao CCN51 was also analyzed. Surprisingly, we found high detectable levels of Cd2+ in the non-cadmium supplemented control, suggesting an extra source of cadmium in the pot. Moreover, despite their cadmium reduction performance under in vitro conditions, they exerted highly variable outcomes on stem cadmium accumulation. While S1C2 and R1C2 showed a considerable reduction of Cd content in cacao stems, the strain V3C3 did not show any effect on Cd content. This highlights the complexity of the plant-bacteria interactions and the importance of the in vivo test for the selection of promising PGPR bacteria. Overall, our results suggest the cadmium alleviation potential and promising prospects of native Bacillus strains associated with Amazonian cacao.

3.
Syst Appl Microbiol ; 43(1): 126044, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31810817

RESUMO

Three symbiotic nitrogen-fixing bacteria (BD68T, BD66 and BD73) isolated from root nodules of Lotus tenuis in lowland soils of the Flooding Pampa (Argentina), previously classified as members of the Mesorhizobium genus, were characterized in this study. Phylogenetic analysis of their 16S rRNA gene sequences showed a close relationship to M. japonicum MAFF 303099T, M. erdmanii USDA 3471T, M. carmichaelinearum ICMP 18942T, M. opportunistum WSM 2975T and M. jarvisii ATCC 33699T, with sequence identities of 99.72%-100%. Multilocus sequence analysis of other housekeeping genes revealed that the three isolates belonged to a phylogenetically distinct clade within the genus Mesorhizobium. Strain BD68T was designated as the group representative and its genome was fully sequenced. The average nucleotide identity and in silico DNA-DNA hybridization comparisons between BD68T and the most related type strains showed values below the accepted threshold for species discrimination. Phenotypic and chemotaxonomic features were also studied. Based on these results, BD68T, BD66 and BD73 could be considered to represent a novel species of the genus Mesorhizobium, for which the name Mesorhizobium intechi sp. nov. is hereby proposed. The type strain of this species is BD68T (=CECT 9304T=LMG 30179T).


Assuntos
Lotus/microbiologia , Mesorhizobium/classificação , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Argentina , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Bacterianos/genética , Genes Essenciais/genética , Genoma Bacteriano/genética , Mesorhizobium/química , Mesorhizobium/citologia , Mesorhizobium/fisiologia , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...