Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1290473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38029100

RESUMO

The natural products (NPs) biosynthetic gene clusters (BGCs) represent the adapting biochemical toolkit for microorganisms to thrive different microenvironments. Despite their high diversity, particularly at the genomic level, detecting them in a shake-flask is challenging and remains the primary obstacle limiting our access to valuable chemicals. Studying the molecular mechanisms that regulate BGC expression is crucial to design of artificial conditions that derive on their expression. Here, we propose a phylogenetic analysis of regulatory elements linked to biosynthesis gene clusters, to classify BGCs to regulatory mechanisms based on protein domain information. We utilized Hidden Markov Models from the Pfam database to retrieve regulatory elements, such as histidine kinases and transcription factors, from BGCs in the MIBiG database, focusing on actinobacterial strains from three distinct environments: oligotrophic basins, rainforests, and marine environments. Despite the environmental variations, our isolated microorganisms share similar regulatory mechanisms, suggesting the potential to activate new BGCs using activators known to affect previously characterized BGCs.

2.
BMC Genomics ; 24(1): 622, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37858045

RESUMO

Exploring Brevibacterium strains from various ecosystems may lead to the discovery of new antibiotic-producing strains. Brevibacterium sp. H-BE7, a strain isolated from marine sediments from Northern Patagonia, Chile, had its genome sequenced to study the biosynthetic potential to produce novel natural products within the Brevibacterium genus. The genome sequences of 98 Brevibacterium strains, including strain H-BE7, were selected for a genomic analysis. A phylogenomic cladogram was generated, which divided the Brevibacterium strains into four major clades. A total of 25 strains are potentially unique new species according to Average Nucleotide Identity (ANIb) values. These strains were isolated from various environments, emphasizing the importance of exploring diverse ecosystems to discover the full diversity of Brevibacterium. Pangenome analysis of Brevibacterium strains revealed that only 2.5% of gene clusters are included within the core genome, and most gene clusters occur either as singletons or as cloud genes present in less than ten strains. Brevibacterium strains from various phylogenomic clades exhibit diverse BGCs. Specific groups of BGCs show clade-specific distribution patterns, such as siderophore BGCs and carotenoid-related BGCs. A group of clade IV-A Brevibacterium strains possess a clade-specific Polyketide synthase (PKS) BGCs that connects with phenazine-related BGCs. Within the PKS BGC, five genes, including the biosynthetic PKS gene, participate in the mevalonate pathway and exhibit similarities with the phenazine A BGC. However, additional core biosynthetic phenazine genes were exclusively discovered in nine Brevibacterium strains, primarily isolated from cheese. Evaluating the antibacterial activity of strain H-BE7, it exhibited antimicrobial activity against Salmonella enterica and Listeria monocytogenes. Chemical dereplication identified bioactive compounds, such as 1-methoxyphenazine in the crude extracts of strain H-BE7, which could be responsible of the observed antibacterial activity. While strain H-BE7 lacks the core phenazine biosynthetic genes, it produces 1-methoxyphenazine, indicating the presence of an unknown biosynthetic pathway for this compound. This suggests the existence of alternative biosynthetic pathways or promiscuous enzymes within H-BE7's genome.


Assuntos
Brevibacterium , Brevibacterium/genética , Brevibacterium/metabolismo , Ecossistema , Genômica , Filogenia , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Família Multigênica , Fenazinas
3.
PLoS Comput Biol ; 19(4): e1010998, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37014908

RESUMO

The increase in microbial sequenced genomes from pure cultures and metagenomic samples reflects the current attainability of whole-genome and shotgun sequencing methods. However, software for genome visualization still lacks automation, integration of different analyses, and customizable options for non-experienced users. In this study, we introduce GenoVi, a Python command-line tool able to create custom circular genome representations for the analysis and visualization of microbial genomes and sequence elements. It is designed to work with complete or draft genomes, featuring customizable options including 25 different built-in color palettes (including 5 color-blind safe palettes), text formatting options, and automatic scaling for complete genomes or sequence elements with more than one replicon/sequence. Using a Genbank format file as the input file or multiple files within a directory, GenoVi (i) visualizes genomic features from the GenBank annotation file, (ii) integrates a Cluster of Orthologs Group (COG) categories analysis using DeepNOG, (iii) automatically scales the visualization of each replicon of complete genomes or multiple sequence elements, (iv) and generates COG histograms, COG frequency heatmaps and output tables including general stats of each replicon or contig processed. GenoVi's potential was assessed by analyzing single and multiple genomes of Bacteria and Archaea. Paraburkholderia genomes were analyzed to obtain a fast classification of replicons in large multipartite genomes. GenoVi works as an easy-to-use command-line tool and provides customizable options to automatically generate genomic maps for scientific publications, educational resources, and outreach activities. GenoVi is freely available and can be downloaded from https://github.com/robotoD/GenoVi.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Genômica/métodos , Software , Genoma Microbiano
4.
Artigo em Inglês | MEDLINE | ID: mdl-35085063

RESUMO

An alkaliphilic actinobacterium, designated VN6-2T, was isolated from marine sediment collected from Valparaíso Bay, Chile. Strain VN6-2T formed yellowish-white branched substrate mycelium without fragmentation. Aerial mycelium was well developed, forming wavy or spiral spore chains. Strain VN6-2T exhibited a 16S rRNA gene sequence similarity of 93.9 % to Salinactinospora qingdaonensis CXB832T, 93.7 % to Murinocardiopsis flavida 14-Be-013T, and 93.7 % to Lipingzhangella halophila 14-Be-013T. Genome sequencing revealed a genome size of 5.9 Mb and an in silico G+C content of 69.3 mol%. Both of the phylogenetic analyses based on 16S rRNA gene sequences and the up-to-date bacterial core gene sequences revealed that strain VN6-2T formed a distinct monophyletic clade within the family Nocardiopsaceae. Chemotaxonomic assessment of strain VN6-2T showed that the major fatty acids were iso-C16 : 0, anteiso-C17 : 0 and 10-methyl-C18 : 0, and the predominant respiratory quinones were MK-9, MK-9(H2) and MK-9(H4). Whole-cell hydrolysates contained meso-diaminopimelic acid as the cell-wall diamino acid, and ribose and xylose as the diagnostic sugars. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, aminophospholipids, glycolipid and phospholipid. Based on the results of this polyphasic study, a novel genus, Spiractinospora gen. nov., is proposed within the family Nocardiopsaceae and the type species Spiractinospora alimapuensis gen. nov., sp. nov. The type strain is VN6-2T (CECT 30026T, CCUG 66258T). On the basis of the phylogenetic results herein, we also propose that Nocardiopsis arvandica and Nocardiopsis litoralis are later heterotypic synonyms of Nocardiopsis sinuspersici and Nocardiopsis kunsanensis, respectively, for which emended descriptions are given.


Assuntos
Sedimentos Geológicos/microbiologia , Nocardiopsis , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Baías , Chile , DNA Bacteriano/genética , Ácidos Graxos/química , Nocardiopsis/classificação , Nocardiopsis/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/química
6.
Int J Syst Evol Microbiol ; 69(3): 783-790, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30688628

RESUMO

A novel Gram-positive, non-motile, non-spore-forming and aerobic bacterium, designated strain VA37-3T, was isolated from a marine sediment sample collected at 19.2 m water depth from Valparaíso bay, Chile. Strain VA37-3T exhibits 97.6 % 16S rRNA gene sequence similarity to Corynebacterium marinum D7015T, 96.4 % to Corynebacterium humireducens MFC-5T and 96 % to Corynebacterium testudinoris M935/96/4T; and a rpoB gene sequence similarity of 85.1 % to Corynebacterium pollutisoli VMS11T, both analyses suggesting that strain VA37-3T represents a novel species of Corynebacterium. Physiological testing indicated that strain VA37-3T requires artificial sea water or sodium-supplemented media for growth, representing the first obligate marine actinomycete of the genus Corynebacterium. The genome of the proposed new species, along with the type strains of its most closely related species were sequenced and characterized. In silico genome-based similarity analyses revealed an ANIb of 72.8 % (C. marinum D7015T), ANIm of 85.0 % (Corynebacterium mustelae DSM 45274T), tetra of 0.90 (Corynebacterium callunae DSM 20147T) and ggdc of 24.7 % (Corynebacterium kutscheri DSM 20755T) when compared with the closest related strains. The genomic DNA G+C content of strain VA37-3T was 57.0 %. Chemotaxonomic assessment of strain VN6-2T showed the major fatty acids were C18 : 1ω9c and C16 : 0. Menaquinones predominantly consisted of MK-8(II-H2). Polar lipids consisted of diphosphatidylglycerol, glycolipids, phosphatidylglycerol, phosphoglycolipid and phosphatidylinositol. Mycolic acids also were present. Overall, the results from phylogenetic, phenotypic and genomic analyses confirmed that strain VA37-3T represents a novel species of the genus Corynebacterium, for which the name Corynebacterium alimapuense sp. nov. is proposed, with VA37-3T as the type strain (=CCUG 69366T=NCIMB 15118T).


Assuntos
Corynebacterium/classificação , Sedimentos Geológicos/microbiologia , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Baías , Chile , Corynebacterium/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Glicolipídeos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
7.
Front Microbiol ; 9: 2309, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30425685

RESUMO

Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.

8.
Mar Drugs ; 15(9)2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28892017

RESUMO

Recently, bioprospecting in underexplored habitats has gained enhanced focus, since new taxa of marine actinobacteria can be found, and thus possible new metabolites. Actinobacteria are in the foreground due to their versatile production of secondary metabolites that present various biological activities, such as antibacterials, antitumorals and antifungals. Chilean marine ecosystems remain largely unexplored and may represent an important source for the discovery of bioactive compounds. Various culture conditions to enrich the growth of this phylum were used and 232 bacterial strains were isolated. Comparative analysis of the 16S rRNA gene sequences led to identifying genetic affiliations of 32 genera, belonging to 20 families. This study shows a remarkable culturable diversity of actinobacteria, associated to marine environments along Chile. Furthermore, 30 streptomycete strains were studied to establish their antibacterial activities against five model strains, Staphylococcus aureus, Listeria monocytogenes, Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa, demonstrating abilities to inhibit bacterial growth of Gram-positive bacteria. To gain insight into their metabolic profiles, crude extracts were submitted to liquid chromatography-high resolution mass spectrometry (LC-HRMS) analysis to assess the selection of streptomycete strains with potentials of producing novel bioactive metabolites. The combined approach allowed for the identification of three streptomycete strains to pursue further investigations. Our Chilean marine actinobacterial culture collection represents an important resource for the bioprospection of novel marine actinomycetes and its metabolites, evidencing their potential as producers of natural bioproducts.


Assuntos
Actinobacteria/metabolismo , Antibacterianos/farmacologia , Organismos Aquáticos , Bactérias Gram-Positivas/efeitos dos fármacos , Streptomyces/metabolismo , Actinobacteria/genética , Animais , Antibacterianos/química , Biodiversidade , Bioprospecção , Chile , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...