Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 347: 119045, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778069

RESUMO

In order to explore the alteration of N transformation and N2O emissions in acid soil with the co-application of straw and different types of nitrogen (N) fertilizers, an incubation experiment was carried out for 40 days. There are totally five treatments in the study: (a) without straw and N fertilizer (N0), (b) straw alone application (SN0), (c) straw with NH4Cl (SN1), (d) straw with NaNO3 (SN2), and (e) straw with NH4NO3 (SN3). N2O emissions, soil physicochemical properties, and abundance/activity of ammonia-oxidizing archaea (AOA) were measured. The results showed that the combined application of straw and N enhanced N2O emissions, particularly, SN2 and SN3 treatments. Moreover, the soil pH was lower in co-application treatments and the average decreasing rate was 9.69%. Specially, the pH was lowest in the SN1 treatment. The results of correlation analysis indicated a markedly negative relationship between pH and N2O, as well as a negative relationship between pH and net mineralization rate. These findings suggest that pH alteration can affect the N transformation process in soil and thus influence N2O emissions. In addition, the dominant AOA at the genus level in the SN2 treatment was Nitrosopumilus, and Candidatus nitrosocosmicus in the SN3 treatment. The reshaped AOA structure can serve as additional evidence of the changes in the N transformation process. In conclusion, as the return of straw, the cumulation of N2O from arable acid soil depends on the form of N fertilizer. It is also important to consider how N fertilizer is applied to reduce the possibility of N being lost in the soil as gas.


Assuntos
Fertilizantes , Solo , Solo/química , Fertilizantes/análise , Nitrogênio/análise , Óxido Nitroso/análise , Archaea , Agricultura
2.
J Environ Manage ; 336: 117602, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36967687

RESUMO

Biochar has been shown to affect the nitrogen (N) cycle in soil, however, it is unknown how this occurs. Therefore, we used metabolomics, high-throughput sequencing, and quantitative PCR to explore biochar and nitrogen fertilizer effects on the mitigation mechanisms of adverse environments in acidic soil. In the current research, we used acidic soil and maize straw biochar (pyrolyzed at 400 °C with limited oxygen). Three maize straw biochar levels (B1; 0t ha-1, B2; 45 t ha-1, and B3; 90 t ha-1) along with three N fertilizer (urea) levels (N1; 0 kg ha-1, N2; 225 kg ha-1 mg kg-1, and N3; 450 kg ha-1 mg kg-1) were employed in a sixty-day pot experiment. We found that the formation of NH+ 4-N was faster at 0-10 days, while the formation of NO- 3-N occurred at 20-35 days. Furthermore, the combined application of biochar and N fertilizer most effectively boosted soil inorganic N contents compared to biochar and N fertilizer treatments alone. The B3 treatment increased the total N and total inorganic N by 0.2-24.2% and 55.2-91.7%, respectively. Soil microorganism, N fixation, and nitrification capabilities increased with biochar and N fertilizer addition in terms of N-cycling-functional genes. Biochar-N fertilizer had a greater impact on the soil bacterial community and their diversity and richness. Metabolomics revealed 756 distinct metabolites, including 8 substantially upregulated metabolites and 21 significantly downregulated metabolites. A significant amount of lipids and organic acids were formed by biochar-N fertilizer treatments. Thus, biochar and N fertilizer triggered soil metabolism by affecting bacterial community structure, and N-cycling of the soil micro-ecological environment.


Assuntos
Microbiota , Solo , Solo/química , Fertilizantes/análise , Carvão Vegetal/química , Ciclo do Nitrogênio , Microbiologia do Solo , Nitrogênio/análise
3.
Plant Physiol Biochem ; 144: 345-354, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31622937

RESUMO

Boron (B) and calcium (Ca) are essential elements for plant growth. Both deficiencies inhibit root growth. However, the mechanism of inhibition is not well clear. Morphological characteristics of roots and changes in root cell wall grown at different B and Ca deficiencies were examined by using a hydroponic culture system. Both B and Ca deficiencies caused reduced plant biomass and root growth. Ca deficiency significantly decreased the fresh weight of root, stem, and leaves by 47%, 50%, and 62%, respectively, while B deficiency only reduced root fresh weight. The PCA combined with Pearson correlation analysis showed that there was significant different correlation among root parameters under B and Ca deficiency treatments when compared to control. The results of observation of transmission electron microscope showed that Ca deficiency reduced but B deprivation increased the thickness of the cell wall. Combining these technologies like X-ray diffraction, fourier transform infrared spectroscopy, homogalacturonan epitopes (JIM5 and JIM7), we confirmed that those changes above may be due to different changes in the degree of methyl esterification of pectin and glycoprotein of the cell wall. Taken together, we concluded that B deficiency can promote the formation of more low methyl esterified pectin to increase cell wall thickness, and then affect the morphological development of root system, while the formation of more highly methyl esterified pectin to increase cell wall degradation under Ca deficiency, which inhibited root elongation and formation of root branches.


Assuntos
Boro/metabolismo , Cálcio/metabolismo , Parede Celular/metabolismo , Poncirus/metabolismo , Plântula/metabolismo , Pectinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...