Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Endocrinol ; 182(6): 549-557, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32213652

RESUMO

OBJECTIVE: The carotid bodies (CBs) are peripheral chemoreceptor organs classically described as being O2 sensors, which are increasingly emerging as core players in metabolic control. Herein we evaluated CB activity in prediabetes patients and determined its correlation with dysmetabolism clinical features. DESIGN AND METHODS: Prediabetes patients were recruited at the Cardiology Service, Hospital Santa Marta, Centro Hospitalar Lisboa Central, EPE (CHLC-EPE). The study was approved by CHLC-EPE and NOVA Medical School Ethics Committee. Thirty-three prediabetic and 14 age-matched, non-prediabetic, volunteers had their peripheral chemosensitivity evaluated by the Dejours test. Serum biomarkers of metabolic disease, insulin sensitivity (HOMA-IR), blood pressure, carotid intima-media thickness (cIMT) and glucose tolerance were assessed. RESULTS: CB chemosensitivity was significantly increased in prediabetic group (P < 0.01). Fasting blood, glucose intolerance, fasting insulin and HOMA-IR were significantly higher in prediabetes patients. Insulin resistance correlated both with peripheral chemosensitivity, assessed by the Dejours test (P < 0.05) and with abdominal circumference (P < 0.01). HbA1c correlated with HOMA-IR (P < 0.05) and left cIMT (P < 0.05) in prediabetes patients. CONCLUSIONS: We conclude that CB is overactive in prediabetes subjects and that peripheral chemosensitivity correlates with fasting insulin and insulin resistance representing a novel non-invasive functional biomarker to forecast early metabolic disease.


Assuntos
Corpo Carotídeo/metabolismo , Estado Pré-Diabético/sangue , Estado Pré-Diabético/diagnóstico , Idoso , Biomarcadores/metabolismo , Glicemia , Corpo Carotídeo/fisiopatologia , Feminino , Humanos , Insulina/sangue , Resistência à Insulina , Masculino , Pessoa de Meia-Idade
2.
Nutrients ; 11(6)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141900

RESUMO

Animal experimentation has a long history in the study of metabolic syndrome-related disorders. However, no consensus exists on the best models to study these syndromes. Knowing that different diets can precipitate different metabolic disease phenotypes, herein we characterized several hypercaloric rat models of obesity and type 2 diabetes, comparing each with a genetic model, with the aim of identifying the most appropriate model of metabolic disease. The effect of hypercaloric diets (high fat (HF), high sucrose (HSu), high fat plus high sucrose (HFHSu) and high fat plus streptozotocin (HF+STZ) during different exposure times (HF 3 weeks, HF 19 weeks, HSu 4 weeks, HSu 16 weeks, HFHSu 25 weeks, HF3 weeks + STZ) were compared with the Zucker fatty rat. Each model was evaluated for weight gain, fat mass, fasting plasma glucose, insulin and C-peptide, insulin sensitivity, glucose tolerance, lipid profile and liver lipid deposition, blood pressure, and autonomic nervous system function. All animal models presented with insulin resistance and dyslipidemia except the HF+STZ and HSu 4 weeks, which argues against the use of these models as metabolic syndrome models. Of the remaining animal models, a higher weight gain was exhibited by the Zucker fatty rat and wild type rats submitted to a HF diet for 19 weeks. We conclude that the latter model presents a phenotype most consistent with that observed in humans with metabolic disease, exhibiting the majority of the phenotypic features and comorbidities associated with type 2 diabetes in humans.


Assuntos
Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Tipo 2/etiologia , Dieta Hiperlipídica , Sacarose Alimentar , Intolerância à Glucose/etiologia , Resistência à Insulina , Síndrome Metabólica/etiologia , Obesidade/etiologia , Aumento de Peso , Tecido Adiposo/metabolismo , Tecido Adiposo/fisiopatologia , Animais , Biomarcadores/sangue , Glicemia/metabolismo , Pressão Sanguínea , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/fisiopatologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/fisiopatologia , Dislipidemias/sangue , Dislipidemias/etiologia , Dislipidemias/fisiopatologia , Ingestão de Energia , Intolerância à Glucose/sangue , Intolerância à Glucose/fisiopatologia , Hipertensão/etiologia , Hipertensão/fisiopatologia , Insulina/sangue , Lipídeos/sangue , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/fisiopatologia , Obesidade/sangue , Obesidade/fisiopatologia , Fenótipo , Ratos Wistar , Ratos Zucker
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...