Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 416(11): 2783-2796, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38057634

RESUMO

Innate immune systems alter the concentrations of trace elements in host niches in response to invading pathogens during infection. This work reports the interplay between d-block metal ions and their associated biomolecules using hyphenated elemental techniques to spatially quantify both elemental distributions and the abundance of specific transport proteins. Here, lung tissues were collected for analyses from naïve and Streptococcus pneumoniae-infected mice fed on a zinc-restricted or zinc-supplemented diet. Spatiotemporal distributions of manganese (55Mn), iron (56Fe), copper (63Cu), and zinc (66Zn) were determined by quantitative laser ablation-inductively coupled plasma-mass spectrometry. The murine transport proteins ZIP8 and ZIP14, which are associated with zinc transport, were also imaged by incorporation of immunohistochemistry techniques into the analytical workflow. Collectively, this work demonstrates the potential of a single instrumental platform suitable for multiplex analyses of tissues and labelled antibodies to investigate complex elemental interactions at the host-pathogen interface. Further, these methods have the potential for broad application to investigations of biological pathways where concomitant measurement of elements and biomolecules is crucial to understand the basis of disease and aid in development of new therapeutic approaches.


Assuntos
Infecções Bacterianas , Oligoelementos , Camundongos , Animais , Proteínas de Transporte , Espectrometria de Massas/métodos , Oligoelementos/análise , Zinco/análise , Cobre/análise
2.
Front Cell Infect Microbiol ; 13: 1322973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249299

RESUMO

Klebsiella pneumoniae is a World Health Organization priority pathogen and a significant clinical concern for infections of the respiratory and urinary tracts due to widespread and increasing resistance to antimicrobials. In the absence of a vaccine, there is an urgent need to identify novel targets for therapeutic development. Bacterial pathogens, including K. pneumoniae, require the d-block metal ion zinc as an essential micronutrient, which serves as a cofactor for ~6% of the proteome. During infection, zinc acquisition necessitates the use of high affinity uptake systems to overcome niche-specific zinc limitation and host-mediated nutritional immunity. Here, we report the identification of ZnuCBA and ZniCBA, two ATP-binding cassette permeases that are highly conserved in Klebsiella species and contribute to K. pneumoniae AJ218 zinc homeostasis, and the high-resolution structure of the zinc-recruiting solute-binding protein ZniA. The Znu and Zni permeases appear functionally redundant with abrogation of both systems required to reduce K. pneumoniae zinc accumulation. Disruption of both systems also exerted pleiotropic effects on the homeostasis of other d-block elements. Zinc limitation perturbed K. pneumoniae cell morphology and compromised resistance to stressors, such as salt and oxidative stress. The mutant strain lacking both systems showed significantly impaired virulence in acute lung infection models, highlighting the necessity of zinc acquisition in the virulence and pathogenicity of K. pneumoniae.


Assuntos
Klebsiella pneumoniae , Zinco , Klebsiella pneumoniae/genética , Virulência , Klebsiella , Proteínas de Membrana Transportadoras
3.
Microbiol Spectr ; 10(6): e0249522, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36413018

RESUMO

Metal ions are required by all organisms for the chemical processes that support life. However, in excess they can also exert toxicity within biological systems. During infection, bacterial pathogens such as Streptococcus pneumoniae are exposed to host-imposed metal intoxication, where the toxic properties of metals, such as copper, are exploited to aid in microbial clearance. However, previous studies investigating the antimicrobial efficacy of copper in vivo have reported variable findings. Here, we use a highly copper-sensitive strain of S. pneumoniae, lacking both copper efflux and intracellular copper buffering by glutathione, to investigate how copper stress is managed and where it is encountered during infection. We show that this strain exhibits highly dysregulated copper homeostasis, leading to the attenuation of growth and hyperaccumulation of copper in vitro. In a murine infection model, whole-tissue copper quantitation and elemental bioimaging of the murine lung revealed that infection with S. pneumoniae resulted in increased copper abundance in specific tissues, with the formation of spatially discrete copper hot spots throughout the lung. While the increased copper was able to reduce the viability of the highly copper-sensitive strain in a pneumonia model, copper levels in professional phagocytes and in a bacteremic model were insufficient to prosecute bacterial clearance. Collectively, this study reveals that host copper is redistributed to sites of infection and can impact bacterial viability in a hypersusceptible strain. However, in wild-type S. pneumoniae, the concerted actions of the copper homeostatic mechanisms are sufficient to facilitate continued viability and virulence of the pathogen. IMPORTANCE Streptococcus pneumoniae (the pneumococcus) is one of the world's foremost bacterial pathogens. Treatment of both localized and systemic pneumococcal infection is becoming complicated by increasing rates of multidrug resistance globally. Copper is a potent antimicrobial agent used by the mammalian immune system in the defense against bacterial pathogens. However, unlike other bacterial species, this copper stress is unable to prosecute pneumococcal clearance. This study determines how the mammalian host inflicts copper stress on S. pneumoniae and the bacterial copper tolerance mechanisms that contribute to maintenance of viability and virulence in vitro and in vivo. This work has provided insight into the chemical biology of the host-pneumococcal interaction and identified a potential avenue for novel antimicrobial development.


Assuntos
Anti-Infecciosos , Infecções Pneumocócicas , Animais , Camundongos , Proteínas de Bactérias , Cobre , Pulmão/microbiologia , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae
4.
Cell Rep ; 38(2): 110202, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021083

RESUMO

Streptococcus pneumoniae is the primary cause of community-acquired bacterial pneumonia with rates of penicillin and multidrug-resistance exceeding 80% and 40%, respectively. The innate immune response generates a variety of antimicrobial agents to control infection, including zinc stress. Here, we characterize the impact of zinc intoxication on S. pneumoniae, observing disruptions in central carbon metabolism, lipid biogenesis, and peptidoglycan biosynthesis. Characterization of the pivotal peptidoglycan biosynthetic enzyme GlmU indicates a sensitivity to zinc inhibition. Disruption of the sole zinc efflux pathway, czcD, renders S. pneumoniae highly susceptible to ß-lactam antibiotics. To dysregulate zinc homeostasis in the wild-type strain, we investigated the safe-for-human-use ionophore 5,7-dichloro-2-[(dimethylamino)methyl]quinolin-8-ol (PBT2). PBT2 rendered wild-type S. pneumoniae strains sensitive to a range of antibiotics. Using an invasive ampicillin-resistant strain, we demonstrate in a murine pneumonia infection model the efficacy of PBT2 + ampicillin treatment. These findings present a therapeutic modality to break antibiotic resistance in multidrug-resistant S. pneumoniae.


Assuntos
Resistência a Ampicilina/fisiologia , Streptococcus pneumoniae/metabolismo , Zinco/metabolismo , Ampicilina/farmacologia , Resistência a Ampicilina/genética , Animais , Antibacterianos/farmacologia , Clioquinol/análogos & derivados , Clioquinol/farmacologia , Modelos Animais de Doenças , Feminino , Homeostase , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Pneumonia
5.
PLoS Pathog ; 15(8): e1007957, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31437249

RESUMO

Human zinc deficiency increases susceptibility to bacterial infection. Although zinc supplementation therapies can reduce the impact of disease, the molecular basis for protection remains unclear. Streptococcus pneumoniae is a major cause of bacterial pneumonia, which is prevalent in regions of zinc deficiency. We report that dietary zinc levels dictate the outcome of S. pneumoniae infection in a murine model. Dietary zinc restriction impacts murine tissue zinc levels with distribution post-infection altered, and S. pneumoniae virulence and infection enhanced. Although the activation and infiltration of murine phagocytic cells was not affected by zinc restriction, their efficacy of bacterial control was compromised. S. pneumoniae was shown to be highly sensitive to zinc intoxication, with this process impaired in zinc restricted mice and isolated phagocytic cells. Collectively, these data show how dietary zinc deficiency increases sensitivity to S. pneumoniae infection while revealing a role for zinc as a component of host antimicrobial defences.


Assuntos
Suplementos Nutricionais , Modelos Animais de Doenças , Pneumopatias/imunologia , Infecções Pneumocócicas/imunologia , Streptococcus pneumoniae/imunologia , Virulência/efeitos dos fármacos , Zinco/administração & dosagem , Animais , Feminino , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Camundongos , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Streptococcus pneumoniae/efeitos dos fármacos , Streptococcus pneumoniae/crescimento & desenvolvimento
6.
Nat Microbiol ; 4(12): 2237-2245, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406331

RESUMO

Spore-forming bacteria encompass a diverse range of genera and species, including important human and animal pathogens, and food contaminants. Clostridioides difficile is one such bacterium and is a global health threat because it is the leading cause of antibiotic-associated diarrhoea in hospitals. A crucial mediator of C. difficile disease initiation, dissemination and re-infection is the formation of spores that are resistant to current therapeutics, which do not target sporulation. Here, we show that cephamycin antibiotics inhibit C. difficile sporulation by targeting spore-specific penicillin-binding proteins. Using a mouse disease model, we show that combined treatment with the current standard-of-care antibiotic, vancomycin, and a cephamycin prevents disease recurrence. Cephamycins were found to have broad applicability as an anti-sporulation strategy, as they inhibited sporulation in other spore-forming pathogens, including the food contaminant Bacillus cereus. This study could directly and immediately affect treatment of C. difficile infection and advance drug development to control other important spore-forming bacteria that are problematic in the food industry (B. cereus), are potential bioterrorism agents (Bacillus anthracis) and cause other animal and human infections.


Assuntos
Antibacterianos/farmacologia , Cefamicinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/prevenção & controle , Animais , Toxinas Bacterianas/genética , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Clostridioides difficile/genética , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Ligação às Penicilinas/efeitos dos fármacos , Proteínas de Ligação às Penicilinas/genética , Esporos Bacterianos/efeitos dos fármacos , Vancomicina/farmacologia , Células Vero/efeitos dos fármacos
7.
Sci Rep ; 7(1): 3665, 2017 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-28623367

RESUMO

The increased incidence of antibiotic resistant 'superbugs' has amplified the use of broad spectrum antibiotics worldwide. An unintended consequence of antimicrobial treatment is disruption of the gastrointestinal microbiota, resulting in susceptibility to opportunistic pathogens, such as Clostridium difficile. Paradoxically, treatment of C. difficile infections (CDI) also involves antibiotic use, leaving patients susceptible to re-infection. This serious health threat has led to an urgent call for the development of new therapeutics to reduce or replace the use of antibiotics to treat bacterial infections. To address this need, we have developed colostrum-derived antibodies for the prevention and treatment of CDI. Pregnant cows were immunised to generate hyperimmune bovine colostrum (HBC) containing antibodies that target essential C. difficile virulence components, specifically, spores, vegetative cells and toxin B (TcdB). Mouse infection and relapse models were used to compare the capacity of HBC to prevent or treat primary CDI as well as prevent recurrence. Administration of TcdB-specific colostrum alone, or in combination with spore or vegetative cell-targeted colostrum, prevents and treats C. difficile disease in mice and reduces disease recurrence by 67%. C. difficile-specific colostrum should be re-considered as an immunotherapeutic for the prevention or treatment of primary or recurrent CDI.


Assuntos
Anticorpos Antibacterianos/imunologia , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/microbiologia , Clostridioides difficile/imunologia , Infecções por Clostridium/veterinária , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibioticoprofilaxia , Anticorpos Antibacterianos/uso terapêutico , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/uso terapêutico , Especificidade de Anticorpos/imunologia , Proteínas de Bactérias/imunologia , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Doenças dos Bovinos/patologia , Clostridioides difficile/efeitos dos fármacos , Reações Cruzadas/imunologia , Camundongos , Testes de Neutralização , Recidiva , Proteínas Repressoras/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...