Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 98(3): e0190223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38421180

RESUMO

The role of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron BA.1 Spike (S) on disease pathogenesis was investigated. For this, we generated recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 S gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 strain genome. The recombinant viruses were characterized in vitro and in vivo. Viral entry, cell-cell fusion, plaque size, and the replication kinetics of the rWA1-Omi-S virus were markedly impaired when compared to the rWA1-D614G virus, demonstrating a lower fusogenicity and ability to spread cell-to-cell of rWA1-Omi-S. To assess the contribution of the Omicron BA.1 S protein to SARS-CoV-2 pathogenesis, the pathogenicity of rWA1-D614G and rWA1-Omi-S viruses was compared in a feline model. While the rWA1-D614G-inoculated cats were lethargic and showed increased body temperatures on days 2 and 3 post-infection (pi), rWA1-Omi-S-inoculated cats remained subclinical and gained weight throughout the 14-day experimental period. Animals inoculated with rWA1-D614G presented higher infectious virus shedding in nasal secretions, when compared to rWA1-Omi-S-inoculated animals. In addition, tissue replication of the rWA1-Omi-S was markedly reduced compared to the rWA1-D614G, as evidenced by lower viral load in tissues on days 3 and 5 pi. Histologic examination of the nasal turbinate and lungs revealed intense inflammatory infiltration in rWA1-D614G-inoculated animals, whereas rWA1-Omi-S-inoculated cats presented only mild to modest inflammation. Together, these results demonstrate that the S protein is a major virulence determinant for SARS-CoV-2 playing a major role for the attenuated phenotype of the Omicron virus. IMPORTANCE: We have demonstrated that the Omicron BA.1.1 variant presents lower pathogenicity when compared to D614G (B.1) lineage in a feline model of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There are over 50 mutations across the Omicron genome, of which more than two-thirds are present in the Spike (S) protein. To assess the role of the Omicron BA.1 S on virus pathogenesis, recombinant viruses harboring the S D614G mutation (rWA1-D614G) and the Omicron BA.1 Spike gene (rWA1-Omi-S) in the backbone of the ancestral SARS-CoV-2 WA1 were generated. While the Omicron BA.1 S promoted early entry into cells, it led to impaired fusogenic activity and cell-cell spread. Infection studies with the recombinant viruses in a relevant naturally susceptible feline model of SARS-CoV-2 infection here revealed an attenuated phenotype of rWA1-Omi-S, demonstrating that the Omi-S is a major determinant of the attenuated disease phenotype of Omicron strains.


Assuntos
COVID-19 , Orthopoxvirus , SARS-CoV-2 , Animais , Gatos , COVID-19/virologia , Fenótipo , SARS-CoV-2/classificação , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência , Fatores de Virulência/genética
2.
Autophagy ; 18(1): 142-160, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33966599

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease globally. NAFLD is a consequence of fat accumulation in the liver leading to lipotoxicity. Increasing evidence has demonstrated the critical role of autophagy in NAFLD. This study uncovers the unexpected role of immune surveillance protein DDX58/Rig-1 (DExD/H box helicase 58) in activating macroautophagy/autophagy and protecting from lipotoxicity associated with NAFLD. Here we show for the first time that DDX58 protein is significantly reduced in nonalcoholic steatohepatitis (NASH) mouse model, an aggressive form of NAFLD characterized by inflammation and fibrosis of the liver. In addition to decreased expression of DDX58, we found that DDX58 activity can be attenuated by treatments with palmitic acid (PA), a saturated fatty acid. To investigate whether PA inhibition of DDX58 is harmful to the cell, we characterized DDX58 function in hepatocytes when exposed to high doses of PA in the presence and/or absence of DDX58. We show that siRNA knockdown of DDX58 promotes apoptosis. Importantly, we show that stable overexpression of DDX58 is protective against toxic levels of PA and stimulates autophagy. This study begins to demonstrate the regulation of the autophagy receptor protein SQSTM1/p62 through DDX58. DDX58 expression directly influences SQSTM1 mRNA and protein levels. This work proposes a model in which activating DDX58 increases an autophagic response and this aids in clearing toxic lipid inclusion bodies, which leads to inflammation and apoptosis. Activating a DDX58-induced autophagy response may be a strategy for treating NAFLD.Abbreviations:5'pppdsRNA: 5' triphosphate double-stranded RNA; CDAHFD: choline-deficient, L-amino acid defined high-fat diet; CEBPB: CCAAT/enhancer binding protein (C/EBP), beta; CQ: chloroquine; DDX58/retinoic acid inducible gene 1/Rig-1: DExD/H box helicase 58; h: hours; IFIH1/MDA5: interferon induced with helicase C domain 1; IFNB/IFN-ß: interferon beta 1, fibroblast; KO: knockout; MAVS: mitochondrial antiviral signaling protein; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; NFKB/NF-κB: nuclear factor of kappa light polypeptide gene enhancer in B cells; PA: palmitic acid; poly:IC: polyinosinic:polycytidylic acid; PRR: pattern recognition receptors; PSR: picrosirus red; RAP: rapamycin; RLR: RIG-I-like receptor; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TBK1: TANK-binding kinase 1.


Assuntos
Autofagia , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia/fisiologia , Morte Celular , Inflamação , Camundongos , Ácido Palmítico/farmacologia , Proteína Sequestossoma-1/metabolismo
3.
PLoS One ; 15(7): e0235746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678853

RESUMO

Azole resistant fungal infections remain a health problem for the immune compromised. Current therapies are limited due to rises in new resistance mechanisms. Therefore, it is important to identify new drug targets for drug discovery and novel therapeutics. Arv1 (are1 are2 required for viability 1) function is highly conserved between multiple pathogenic fungal species. Candida albicans (C. albicans) cells lacking CaArv1 are azole hypersusceptible and lack virulence. Saccharomyces cerevisiae (S. cerevisiae) Scarv1 cells are also azole hypersusceptible, a phenotype reversed by expression of CaArv1, indicating conservation in the molecular mechanism for azole susceptibility. To define the relationship between Arv1 function and azole susceptibility, we undertook a structure/function analysis of ScArv1. We identified several conserved amino acids within the ScArv1 homology domain (ScAhd) required for maintaining normal azole susceptibility. Erg11 lanosterol 14-α-demethylase is the rate-limiting enzyme in sterol biosynthesis and is the direct target of azole antifungals, so we used our ScArv1 mutants in order to explore the relationship between ScArv1 and ScErg11. Specific ScArv1 mutants ectopically expressed from a low copy plasmid were unable to restore normal azole susceptibility to Scarv1 cells and had reduced Erg11 protein levels. Erg11 protein stability depended on its ability to form a heterodimeric complex with Arv1. Complex formation was required for maintaining normal azole susceptibility. Scarv1 cells expressing orthologous CaArv1 mutants also had reduced CaErg11 levels, were unable to form a CaArv1-CaErg11 complex, and were azole hypersusceptible. Scarv1 cells expressing CaArv1 mutants unable to interact with CaErg11 could not sustain proper levels of the azole resistant CaErg11Y132F F145L protein. Caarv1/Caarv1 cells expressing CaArv1 mutants unable to interact with CaErg11 were found to lack virulence using a disseminated candidiasis mouse model. Expressing CaErg11Y132F F145L did not reverse the lack of virulence. We hypothesize that the role of Arv1 in Erg11-dependent azole resistance is to stabilize Erg11 protein level. Arv1 inhibition may represent an avenue for treating azole resistance.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esterol 14-Desmetilase/metabolismo , Virulência , Sequência de Aminoácidos , Animais , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Sistema Enzimático do Citocromo P-450/genética , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos BALB C , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Esterol 14-Desmetilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...