Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(5): 4650-4658, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36800544

RESUMO

In the presence of a 4π-periodic contribution to the current phase relation, for example in topological Josephson junctions, odd Shapiro steps are expected to be missing. While missing odd Shapiro steps have been observed in several material systems and interpreted in the context of topological superconductivity, they have also been observed in topologically trivial junctions. Here, we study the evolution of such trivial missing odd Shapiro steps in Al-InAs junctions in the presence of an in-plane magnetic field Bθ. We find that the odd steps reappear at a crossover Bθ value, exhibiting an in-plane field angle anisotropy that depends on spin-orbit coupling effects. We interpret this behavior by theoretically analyzing the Andreev bound state spectrum and the transitions induced by the nonadiabatic dynamics of the junction and attribute the observed anisotropy to mode-to-mode coupling. Our results highlight the complex phenomenology of missing Shapiro steps and the underlying current phase relations in planar Josephson junctions designed to realize Majorana states.

2.
Nano Lett ; 22(15): 6173-6178, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867620

RESUMO

Indium arsenide (InAs) near surface quantum wells (QWs) are promising for the fabrication of semiconductor-superconductor heterostructures given that they allow for a strong hybridization between the two-dimensional states in the quantum well and the ones in the superconductor. In this work, we present results for InAs QWs in the quantum Hall regime placed in proximity of superconducting NbTiN. We observe a negative downstream resistance with a corresponding reduction of Hall (upstream) resistance, consistent with a very high Andreev conversion. We analyze the experimental data using the Landauer-Büttiker formalism, generalized to allow for Andreev reflection processes. We attribute the high efficiency of Andreev conversion in our devices to the large transparency of the InAs/NbTiN interface and the consequent strong hybridization of the QH edge modes with the states in the superconductor.

3.
Nat Commun ; 12(1): 78, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397966

RESUMO

Josephson junctions hosting Majorana fermions have been predicted to exhibit a 4π periodic current phase relation. One experimental consequence of this periodicity is the disappearance of odd steps in Shapiro steps experiments. Experimentally, missing odd Shapiro steps have been observed in a number of materials systems with strong spin-orbit coupling and have been interpreted in the context of topological superconductivity. Here we report on missing odd steps in topologically trivial Josephson junctions fabricated on InAs quantum wells. We ascribe our observations to the high transparency of our junctions allowing Landau-Zener transitions. The probability of these processes is shown to be independent of the drive frequency. We analyze our results using a bi-modal transparency distribution which demonstrates that only few modes carrying 4π periodic current are sufficient to describe the disappearance of odd steps. Our findings highlight the elaborate circumstances that have to be considered in the investigation of the 4π Josephson junctions in relationship to topological superconductivity.

4.
Nano Lett ; 16(11): 7008-7012, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27709965

RESUMO

Carbon nanotubes are famous for their many extraordinary properties. We use a thermodynamical approach, experimental data from the literature, and atomistic simulations to reveal one more remarkable property of the carbon nanotubes that has so far been overlooked. Namely, we predict the existence of very large elastocaloric effect that can reach up to 30 K under moderate loads. Potentially even larger values could be achieved under extreme loads, putting carbon nanotubes in the forefront of caloric materials. Other remarkable features of the elastocaloric effect in carbon nanotubes include linearity of elastocaloric temperature change in applied force (compressive or stretching), very weak dependence on the temperature, and an absence of hysteresis. Such features are extremely desirable for practical applications in cooling devices. Moreover, a similarly large elastocaloric effect is predicted for the graphene. The prediction of a large elastocaloric effect in carbon nanotubes and graphene sets forward an unconventional strategy of targeting materials with moderate caloric responses but the ability to withstand very large loads.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA