Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8019, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580794

RESUMO

In recent years, the automotive industry has witnessed significant progress in the development of automated driving technologies. The integration of advanced sensors and systems in vehicles has led to the emergence of various functionalities, such as driving assistance and autonomous driving. Applying these technologies on the assembly line can enhance the efficiency, safety, and speed of transportation, especially at end-of-line production. This work presents a connected automated vehicle (CAV) demonstrator for generating autonomous driving systems and services for the automotive industry. Our prototype electric vehicle is equipped with state-of-the-art sensors and systems for perception, localization, navigation, and control. We tested various algorithms and tools for transforming the vehicle into a self-driving platform, and the prototype was simulated and tested in an industrial environment as proof of concept for integration into assembly systems and end-of-line transport. Our results show the successful integration of self-driving vehicle platforms in the automotive industry, particularly in factory halls. We demonstrate the localization, navigation, and communication capabilities of our prototype in a demo area. This work anticipates a significant increase in efficiency and operating cost reduction in vehicle manufacturing, despite challenges such as current low traveling speeds and high equipment costs. Ongoing research aims to enhance safety for higher vehicle speeds, making it a more viable business case for manufacturers, considering the increasing standardization of automated driving equipment in cars. The main contribution of this paper lies in introducing the general concept architecture of the integration of automated driving functionalities in end-of-line assembly and production systems. Showing a case study of the effective development and implementation of such functionalities with a CAV demonstrator in a more standardized industrial operational design domain.

2.
Sensors (Basel) ; 22(2)2022 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-35062417

RESUMO

Analyzing data related to the conditions of city streets and avenues could help to make better decisions about public spending on mobility. Generally, streets and avenues are fixed as soon as they have a citizen report or when a major incident occurs. However, it is uncommon for cities to have real-time reactive systems that detect the different problems they have to fix on the pavement. This work proposes a solution to detect anomalies in streets through state analysis using sensors within the vehicles that travel daily and connecting them to a fog-computing architecture on a V2I network. The system detects and classifies the main road problems or abnormal conditions in streets and avenues using Machine Learning Algorithms (MLA), comparing roughness against a flat reference. An instrumented vehicle obtained the reference through accelerometry sensors and then sent the data through a mid-range communication system. With these data, the system compared an Artificial Neural Network (supervised MLA) and a K-Nearest Neighbor (Supervised MLA) to select the best option to handle the acquired data. This system makes it desirable to visualize the streets' quality and map the areas with the most significant anomalies.


Assuntos
Algoritmos , Aprendizado de Máquina , Análise por Conglomerados , Sistemas Computacionais , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...