Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Artif Intell ; 6: 1116870, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36925616

RESUMO

The brain is arguably the most powerful computation system known. It is extremely efficient in processing large amounts of information and can discern signals from noise, adapt, and filter faulty information all while running on only 20 watts of power. The human brain's processing efficiency, progressive learning, and plasticity are unmatched by any computer system. Recent advances in stem cell technology have elevated the field of cell culture to higher levels of complexity, such as the development of three-dimensional (3D) brain organoids that recapitulate human brain functionality better than traditional monolayer cell systems. Organoid Intelligence (OI) aims to harness the innate biological capabilities of brain organoids for biocomputing and synthetic intelligence by interfacing them with computer technology. With the latest strides in stem cell technology, bioengineering, and machine learning, we can explore the ability of brain organoids to compute, and store given information (input), execute a task (output), and study how this affects the structural and functional connections in the organoids themselves. Furthermore, understanding how learning generates and changes patterns of connectivity in organoids can shed light on the early stages of cognition in the human brain. Investigating and understanding these concepts is an enormous, multidisciplinary endeavor that necessitates the engagement of both the scientific community and the public. Thus, on Feb 22-24 of 2022, the Johns Hopkins University held the first Organoid Intelligence Workshop to form an OI Community and to lay out the groundwork for the establishment of OI as a new scientific discipline. The potential of OI to revolutionize computing, neurological research, and drug development was discussed, along with a vision and roadmap for its development over the coming decade.

2.
ACS Biomater Sci Eng ; 7(7): 3018-3029, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34275292

RESUMO

We present a nontraditional fabrication technique for the realization of three-dimensional (3D) microelectrode arrays (MEAs) capable of interfacing with 3D cellular networks in vitro. The technology uses cost-effective makerspace microfabrication techniques to fabricate the 3D MEAs with 3D printed base structures with the metallization of the microtowers and conductive traces being performed by stencil mask evaporation techniques. A biocompatible lamination layer insulates the traces for realization of 3D microtower MEAs (250 µm base diameter, 400 µm height). The process has additionally been extended to realize smaller electrodes (30 µm × 30 µm) at a height of 400 µm atop the 3D microtower using laser micromachining of an additional silicon dioxide (SiO2) insulation layer. A 3D microengineered, nerve-on-a-chip in vitro model for recording and stimulating electrical activity of dorsal root ganglion (DRG) cells has further been integrated with the 3D MEA. We have characterized the 3D electrodes for electrical, chemical, electrochemical, biological, and chip hydration stability performance metrics. A decrease in impedance from 1.8 kΩ to 670 Ω for the microtower electrodes and 55 to 39 kΩ for the 30 µm × 30 µm microelectrodes can be observed for an electrophysiologically relevant frequency of 1 kHz upon platinum electroless plating. Biocompatibility assays on the components of the system resulted in a large range (∼3%-70% live cells), depending on the components. Fourier-transform infrared (FTIR) spectra of the resin material start to reveal possible compositional clues for the resin, and the hydration stability is demonstrated in in-vitro-like conditions for 30 days. The fabricated 3D MEAs are rapidly produced with minimal usage of a cleanroom and are fully functional for electrical interrogation of the 3D organ-on-a-chip models for high-throughput of pharmaceutical screening and toxicity testing of compounds in vitro.


Assuntos
Dispositivos Lab-On-A-Chip , Dióxido de Silício , Microeletrodos , Nervos Periféricos , Impressão Tridimensional
3.
ALTEX ; 37(3): 350-364, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32388569

RESUMO

Organ-on-a-chip devices that mimic in vivo physiology have the potential to identify effects of chemical and drug exposure in early preclinical stages of drug development while relying less heavily on animal models. We have designed a hydrogel rat nerve-on-a-chip (RNoaC) construct that promotes axon growth analogous to mature nerve anatomy and is the first 3D in vitro model to collect electrophysiological and histomorphic metrics that are used to assess in vivo pathophysiology. Here we culture embryonic rat dorsal root ganglia (DRG) in the construct to demonstrate its potential as a preclinical assay for screening implications of nerve dysfunction in chemotherapy-induced peripheral neuropathy (CIPN). RNoaC constructs containing DRG explants from E15 rat pups were exposed to common chemotherapeutics: bortezomib, oxaliplatin, paclitaxel, or vincristine. After 7 days of treatment, axons were electrically stimulated to collect nerve conduction velocity (NCV) and the peak amplitude (AMP), which are two clinical electrophysiological metrics indicative of healthy or diseased populations. We observed decreased NCV and AMP in a dose-dependent manner across all drugs. At high drug concentrations, NCV and AMP were lower than control values by 10-60%. Histopathological analysis revealed that RNoaC exhibit hallmarks of peripheral neuropathy. IC50 values calculated from dose-response curves indicate significant decrease in function occurs before decrease in viability. Our data suggest electrophysiology recordings collected from our RNoaC platform can closely track subtle pathological changes in nerve function. The ability to collect clinically relevant data from RNoaCs suggests it can be an effective tool for in vitro preclinical screening of peripheral neuropathy.


Assuntos
Alternativas aos Testes com Animais/métodos , Antineoplásicos/farmacologia , Dispositivos Lab-On-A-Chip , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Gânglios Espinais , Modelos Biológicos , Ratos , Técnicas de Cultura de Tecidos
4.
Sci Rep ; 9(1): 8921, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222141

RESUMO

Development of "organ-on-a-chip" systems for neuroscience applications are lagging due in part to the structural complexity of the nervous system and limited access of human neuronal & glial cells. In addition, rates for animal models in translating to human success are significantly lower for neurodegenerative diseases. Thus, a preclinical in vitro human cell-based model capable of providing critical clinical metrics such as nerve conduction velocity and histomorphometry are necessary to improve prediction and translation of in vitro data to successful clinical trials. To answer this challenge, we present an in vitro biomimetic model of all-human peripheral nerve tissue capable of showing robust neurite outgrowth (~5 mm), myelination of hNs by primary human Schwann cells (~5%), and evaluation of nerve conduction velocity (0.13-0.28 m/sec), previously unrealized for any human cell-based in vitro system. To the best of our knowledge, this Human Nerve-on-a-chip (HNoaC) system is the first biomimetic microphysiological system of myelinated human peripheral nerve which can be used for evaluating electrophysiological and histological metrics, the gold-standard assessment techniques previously only possible with in vivo studies.


Assuntos
Dispositivos Lab-On-A-Chip , Regeneração Nervosa , Nervos Periféricos/crescimento & desenvolvimento , Engenharia Tecidual , Humanos , Bainha de Mielina/fisiologia , Condução Nervosa/fisiologia , Medicina de Precisão , Células de Schwann/fisiologia
5.
Drug Discov Today ; 24(2): 624-628, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30468877

RESUMO

Nonclinical tests are considered crucial for understanding the safety of investigational medicines. However, the effective translation from nonclinical to human application is limited and must be improved. Drug development stakeholders are working to advance human-based in vitro and in silico methods that may be more predictive of human efficacy and safety in vivo because they enable scientists to model the direct interaction of drugs with human cells, tissues, and biological processes. Here, we recommend test-neutral regulations; increased funding for development and integration of human-based approaches; support for existing initiatives that advance human-based approaches; evaluation of new approaches using human data; establishment of guidelines for procuring human cells and tissues for research; and additional training and educational opportunities in human-based approaches.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Alternativas aos Testes com Animais , Humanos , Invenções , Segurança do Paciente
6.
Methods Mol Biol ; 1773: 155-165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29687388

RESUMO

Adipose tissue is as an abundant and accessible source of stem cells with multipotent properties suitable for tissue engineering and regenerative medical applications. Here, we describe methods from our own laboratory and the literature for the isolation and expansion of adipose-derived stem cells (ASCs). We present a large scale procedure suitable for processing >100 mL volumes of lipoaspirate tissue specimens by collagenase digestion and a related procedure suitable for processing adipose tissue aspirates without digestion.


Assuntos
Adipócitos/citologia , Tecido Adiposo/citologia , Separação Celular/métodos , Lipectomia , Células-Tronco Mesenquimais/citologia , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Compostos Azo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Colagenases/farmacologia , Criopreservação , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia de Fluorescência , Cultura Primária de Células , Coloração e Rotulagem
7.
Plast Reconstr Surg ; 141(2): 232e-243e, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29369990

RESUMO

BACKGROUND: Adipose tissue is a source of adipose-derived stromal/stem cells for tissue engineering and reconstruction and a tissue source for fat grafts. Although liposuction is a simple procedure for the harvest of adipose tissue, the repetition of this surgical intervention can cause adverse effects to the patient and can be a limiting factor for immediate use. Cryopreservation can avoid the morbidity associated with repetitive liposuction, allowing the use of stored tissue after the initial harvest procedure. This article focuses on the characterization of fresh and cryopreserved human adipose tissue. METHODS: Lipoaspirates from eight donors were processed as fresh adipose tissue or cryopreserved for 4 to 6 weeks. Fresh and cryopreserved tissues were collagenase digested and the stromal vascular fraction cells were characterized immediately or cryopreserved. Characterization was based on stromal vascular fraction cell proliferation and immunophenotype. In vivo fat grafting was performed in C57BL/6 green fluorescent protein mice to analyze morphology of the tissue and its adiposity using confocal microscopy, histochemical staining (i.e., hematoxylin and eosin and Masson trichrome), and immunohistochemistry (i.e., green fluorescent protein, perilipin, and CD31). RESULTS: Although tissue and stromal vascular fraction cell cryopreservation reduced the total cell yield, the remaining viable cells retained their adhesive and proliferative properties. The stromal vascular fraction cell immunophenotype showed a significant reduction in the hematopoietic surface markers and increased expression of stromal and adipogenic markers following cryopreservation. In vivo cryopreserved fat grafts showed morphology similar to that of freshly implanted fat grafts. CONCLUSION: In this study, the authors demonstrated that cryopreserved adipose tissue is a potential source of stromal vascular fraction cells and a suitable source for fat grafts.


Assuntos
Adipócitos/fisiologia , Tecido Adiposo/transplante , Criopreservação , Sobrevivência de Enxerto/fisiologia , Células Estromais/fisiologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/citologia , Tecido Adiposo/fisiologia , Adulto , Animais , Biomarcadores/metabolismo , Vasos Sanguíneos/citologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/fisiologia , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Lipectomia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Modelos Animais
8.
Lab Chip ; 15(10): 2221-32, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25850799

RESUMO

The use of advanced in vitro testing is a powerful tool to develop predictive cellular assays suitable for improving the high attrition rates of novel pharmaceutical compounds. A microscale, organotypic model of nerve tissue with physiological measures that mimic clinical nerve compound action potential (CAP) and nerve fiber density (NFD) tests may be more predictive of clinical outcomes, enabling a more cost-effective approach for selecting promising lead compounds with higher chances of late-stage success. However, the neurological architecture, physiology, and surrounding extracellular matrix are hard to mimic in vitro. Using a dual hydrogel construct and explants from rat embryonic dorsal root ganglia, the present study describes an in vitro method for electrophysiological recording of intra- and extra-cellular recordings using a spatially-controlled, microengineered sensory neural fiber tract. Specifically, these 3D neural cultures exhibit both structural and functional characteristics that closely mimic those of afferent sensory peripheral fibers found in vivo. Our dual hydrogel system spatially confines growth to geometries resembling nerve fiber tracts, allowing for a high density of parallel, fasciculated neural growth. Perhaps more importantly, outputs resembling clinically relevant test criteria, including the measurement of CAP and NFD are possible through our advanced model. Moreover, the 3D hydrogel constructs allow flexibility in incorporated cell type, geometric fabrication, and electrical manipulation, providing a viable assay for systematic culture, perturbation, and testing of biomimetic neural growth for mechanistic studies necessitating physiologically-relevant readouts.


Assuntos
Gânglios Espinais/metabolismo , Hidrogéis/química , Dispositivos Lab-On-A-Chip , Fibras Nervosas/metabolismo , Neurônios/metabolismo , Engenharia Tecidual/métodos , Animais , Células Cultivadas , Gânglios Espinais/citologia , Neurônios/citologia , Ratos , Engenharia Tecidual/instrumentação
9.
Cells Tissues Organs ; 201(6): 436-444, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27310337

RESUMO

The capability of multipotent mesenchymal stem cells to maintain cell viability, phenotype and differentiation ability upon thawing is critical if they are to be banked and used for future therapeutic purposes. In the present study, we examined the effect of 9-10 months of cryostorage on the morphology, immunophenotype, colony-forming unit (CFU) and differentiation capacity of fresh and cryopreserved human adipose-derived stromal/stem cells (ASCs) from the same donors. Cryopreservation did not reduce the CFU frequency and the expression levels of CD29, CD73, CD90 and CD105 remained unchanged with the exception of CD34 and CD45; however, the differentiation capacity of cryopreserved ASCs relative to fresh cells was significantly reduced. While our findings suggest that future studies are warranted to improve cryopreservation methods and agents, cryopreserved ASCs retain sufficient features to ensure their practical utility for both research and clinical applications.

10.
Biofabrication ; 6(3): 035026, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25189126

RESUMO

The direct effect of guidance cues on developing and regenerating axons in vivo is not fully understood, as the process involves a multiplicity of attractive and repulsive signals, presented both as soluble and membrane-bound ligands. A better understanding of axon guidance is critical to functional recovery following injury to the nervous system through improved outgrowth and mapping of damaged nerves. Due to their implications as inhibitors to central nervous system regeneration, we investigated the repulsive properties of semaphorin 6A and ephrin-B3 on E15 rat dorsal root ganglion explants, as well as possible interactions with soluble gradients of chemoattractive nerve growth factor (NGF). We employed a 3D biomimetic in vitro choice point model, which enabled the simple and rapid preparation of patterned gel growth matrices with quantifiable presentation of guidance cues in a specifiable manner that resembles the in vivo presentation of soluble and/or immobilized ligands. Neurites demonstrated an inhibitory response to immobilized Sema6A by lumbosacral dorsal root ganglion explants, while no such repulsion was observed for immobilized ephrin-B3 by explants at any spinal level. Interestingly, Sema6A inhibition could be partially attenuated in a concentration-dependent manner through the simultaneous presentation of soluble NGF gradients. The in vitro model described herein represents a versatile and valuable investigative tool in the quest for understanding developmental processes and improving regeneration following nervous system injury.


Assuntos
Axônios/metabolismo , Gânglios Espinais/metabolismo , Fator de Crescimento Neural/metabolismo , Semaforinas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Biomimética/instrumentação , Biomimética/métodos , Gânglios Espinais/citologia , Gânglios Espinais/embriologia , Técnicas In Vitro , Modelos Biológicos , Ratos , Células Receptoras Sensoriais/citologia
11.
Biomed Microdevices ; 15(1): 49-61, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22903647

RESUMO

Chemotactic and haptotactic cues guide neurite growth toward appropriate targets by eliciting attractive or repulsive responses from the neurite growth cones. Here we present an integrated system allowing both structural and molecular micropatterning in dual hydrogel 3D tissue culture constructs for directing in vitro neuronal growth via structural, immobilized, and soluble guidance cues. These tissue culture constructs were fabricated into specifiable geometries using UV light reflected from a digital micromirror device acting as a dynamic photomask, resulting in dual hydrogel constructs consisting of a cell growth-restrictive polyethylene glycol (PEG) boundary with a cell growth-permissive interior of photolabile α-carboxy-2-nitrobenzyl cysteine agarose (CNBC-A). This CNBC-A was irradiated in discrete areas and subsequently tagged with maleimide-conjugated biomolecules. Fluorescent microscopy showed biomolecule binding only at the sites of irradiation in CNBC-A, and confocal microscopy confirmed 3D binding through the depth of the construct. Neurite outgrowth studies showed contained growth throughout CNBC-A. The diffusion rate of soluble fluorescein-bovine serum albumin through the dual hydrogel construct was controlled by PEG concentration and the distance between the protein source and the agarose interior; the timescale for a transient protein gradient changed with these parameters. These findings suggest the dual hydrogel system is a useful platform for manipulating a 3D in vitro microenvironment with patterned structural and molecular guidance cues for modeling neural growth and guidance.


Assuntos
Hidrogéis/química , Hidrogéis/farmacologia , Microtecnologia/métodos , Neuritos/efeitos dos fármacos , Processos Fotoquímicos , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Difusão , Gânglios Espinais/citologia , Maleimidas/química , Neuritos/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Soroalbumina Bovina/química , Técnicas de Cultura de Tecidos
12.
J Biomed Mater Res A ; 99(4): 532-43, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-21936043

RESUMO

Understanding how microenvironmental factors influence neurite growth is important to inform studies in nerve regeneration, plasticity, development, and neurophysiology. In vitro models attempting to more accurately mimic the physiological environment by provision of a 3D growth matrix may provide useful foundations. Some limitations of thick 3D culture models include hampered solute transport, less-robust neurite growth than on 2D substrates, and difficulty in achieving spatial control of growth. To this end, we describe a 3D dual hydrogel model for embryonic rat day 15 dorsal root ganglion tissue explant growth using a digital micromirror device for dynamic mask projection photolithography. The photolithography method developed allowed simple, reproducible, one-step fabrication of thick hydrogel constructs on a variety of substrates, including permeable cell culture inserts. The relationships between projected mask size, crosslinked hydrogel resolution, and gel thickness were characterized, and resolution was found generally to decrease with increasing gel thickness. Cell viability in thick (481 µm) hydrogel constructs was significantly greater on permeable supports than glass, suggesting transport limitations were somewhat alleviated. The observed neurite growth was abundant and occurred in a spatially controlled manner throughout the 3D environment, a crucial step in the quest for a more effective biomimetic model of neurite outgrowth.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Neuritos/fisiologia , Neurônios/citologia , Animais , Técnicas de Cultura de Células/instrumentação , Sobrevivência Celular , Células Cultivadas , Gânglios Espinais/citologia , Teste de Materiais , Neuritos/ultraestrutura , Neurônios/fisiologia , Fotoquímica/métodos , Polietilenoglicóis/química , Ratos , Ratos Long-Evans , Propriedades de Superfície
13.
J Vis Exp ; (48)2011 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-21372777

RESUMO

Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the photocrosslinkable or self polymerizing hydrogel, or selectively adhered to the permeable support membrane using cell-restrictive photopatterning. Using the DMD, we created hydrogel constructs up to ~1mm thick, but thin film (<200 µm) PEG structures were limited by oxygen quenching of the free radical polymerization reaction. We subsequently developed a technique utilizing a layer of oil above the polymerization liquid which allowed thin PEG structure polymerization. In this protocol, we describe the expeditious creation of 3D hydrogel systems for production of microfabricated neural cell and tissue cultures. The dual hydrogel constructs demonstrated herein represent versatile in vitro models that may prove useful for studies in neuroscience involving cell survival, migration, and/or neurite growth and guidance. Moreover, as the protocol can work for many types of hydrogels and cells, the potential applications are both varied and vast.


Assuntos
Técnicas de Cultura de Células/métodos , Gânglios Espinais/citologia , Gânglios Espinais/crescimento & desenvolvimento , Hidrogéis/química , Técnicas de Cultura de Tecidos/métodos , Animais , Embrião de Mamíferos , Polietilenoglicóis/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...