Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
FEBS Lett ; 462(3): 302-6, 1999 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-10622715

RESUMO

With the exception of the methanogenic archaea Methanococcus jannaschii and Methanobacterium thermoautotrophicum deltaH, all organisms surveyed contain orthologs of Escherichia coli cysteinyl-tRNA synthetase (CysRS). The characterization of CysRS-encoding (cysS) genes and the demonstration of their ability to complement an E. coli cysSts mutant reveal that Methanococcus maripaludis and Methanosarcina barkeri, two other methanogenic archaea, possess canonical CysRS proteins. A molecular phylogeny inferred from 40 CysRS sequences indicates that the CysRS of M. maripaludis and Methanosarcina spp. are specific relatives of the CysRS of Pyrococcus spp. and Chlamydia, respectively. This result suggests that the CysRS gene was acquired by lateral gene transfer in at least one euryarchaeotic lineage.


Assuntos
Escherichia coli/genética , Aminoacil-RNA de Transferência/fisiologia , Sequência de Aminoácidos , Animais , Clonagem Molecular , Evolução Molecular , Genes Arqueais , Genes Bacterianos , Teste de Complementação Genética , Mathanococcus/genética , Methanosarcina barkeri/genética , Dados de Sequência Molecular , Mutagênese , Filogenia , Aminoacil-RNA de Transferência/genética , Homologia de Sequência de Aminoácidos
3.
Proc Natl Acad Sci U S A ; 95(22): 12838-43, 1998 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-9789001

RESUMO

Asparaginyl-tRNA (Asn-tRNA) and glutaminyl-tRNA (Gln-tRNA) are essential components of protein synthesis. They can be formed by direct acylation by asparaginyl-tRNA synthetase (AsnRS) or glutaminyl-tRNA synthetase (GlnRS). The alternative route involves transamidation of incorrectly charged tRNA. Examination of the preliminary genomic sequence of the radiation-resistant bacterium Deinococcus radiodurans suggests the presence of both direct and indirect routes of Asn-tRNA and Gln-tRNA formation. Biochemical experiments demonstrate the presence of AsnRS and GlnRS, as well as glutamyl-tRNA synthetase (GluRS), a discriminating and a nondiscriminating aspartyl-tRNA synthetase (AspRS). Moreover, both Gln-tRNA and Asn-tRNA transamidation activities are present. Surprisingly, they are catalyzed by a single enzyme encoded by three ORFs orthologous to Bacillus subtilis gatCAB. However, the transamidation route to Gln-tRNA formation is idled by the inability of the discriminating D. radiodurans GluRS to produce the required mischarged Glu-tRNAGln substrate. The presence of apparently redundant complete routes to Asn-tRNA formation, combined with the absence from the D. radiodurans genome of genes encoding tRNA-independent asparagine synthetase and the lack of this enzyme in D. radiodurans extracts, suggests that the gatCAB genes may be responsible for biosynthesis of asparagine in this asparagine prototroph.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Asparagina/biossíntese , Cocos Gram-Positivos/enzimologia , Transferases de Grupos Nitrogenados/metabolismo , Acilação , Clonagem Molecular , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Glutamato-tRNA Ligase/metabolismo , Cocos Gram-Positivos/genética , Cinética , Modelos Químicos , Fases de Leitura Aberta
4.
Science ; 278(5340): 1119-22, 1997 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-9353192

RESUMO

The sequencing of euryarchaeal genomes has suggested that the essential protein lysyl-transfer RNA (tRNA) synthetase (LysRS) is absent from such organisms. However, a single 62-kilodalton protein with canonical LysRS activity was purified from Methanococcus maripaludis, and the gene that encodes this protein was cloned. The predicted amino acid sequence of M. maripaludis LysRS is similar to open reading frames of unassigned function in both Methanobacterium thermoautotrophicum and Methanococcus jannaschii but is unrelated to canonical LysRS proteins reported in eubacteria, eukaryotes, and the crenarchaeote Sulfolobus solfataricus. The presence of amino acid motifs characteristic of the Rossmann dinucleotide-binding domain identifies M. maripaludis LysRS as a class I aminoacyl-tRNA synthetase, in contrast to the known examples of this enzyme, which are class II synthetases. These data question the concept that the classification of aminoacyl-tRNA synthetases does not vary throughout living systems.


Assuntos
Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/classificação , Mathanococcus/enzimologia , Acilação , Sequência de Aminoácidos , Animais , Bactérias/enzimologia , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Euryarchaeota/enzimologia , Euryarchaeota/genética , Evolução Molecular , Genes Arqueais , Humanos , Cinética , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Mathanococcus/genética , Dados de Sequência Molecular , Filogenia , Aminoacil-RNA de Transferência/biossíntese , Alinhamento de Sequência , Sulfolobus/enzimologia
5.
Proc Natl Acad Sci U S A ; 94(22): 11819-26, 1997 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-9342321

RESUMO

The three genes, gatC, gatA, and gatB, which constitute the transcriptional unit of the Bacillus subtilis glutamyl-tRNAGln amidotransferase have been cloned. Expression of this transcriptional unit results in the production of a heterotrimeric protein that has been purified to homogeneity. The enzyme furnishes a means for formation of correctly charged Gln-tRNAGln through the transamidation of misacylated Glu-tRNAGln, functionally replacing the lack of glutaminyl-tRNA synthetase activity in Gram-positive eubacteria, cyanobacteria, Archaea, and organelles. Disruption of this operon is lethal. This demonstrates that transamidation is the only pathway to Gln-tRNAGln in B. subtilis and that glutamyl-tRNAGln amidotransferase is a novel and essential component of the translational apparatus.


Assuntos
Bacillus subtilis/genética , Glutamina/genética , Transferases de Grupos Nitrogenados/genética , Biossíntese de Proteínas , Acilação , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , Sequência de Bases , Códon , Escherichia coli/genética , Dados de Sequência Molecular , Mutagênese Insercional , Transferases de Grupos Nitrogenados/isolamento & purificação , Transferases de Grupos Nitrogenados/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
6.
Trends Biochem Sci ; 22(2): 39-42, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9048478

RESUMO

Aminoacyl-tRNAs are key components in protein synthesis. They are formed directly by correct acylation of tRNA (by aminoacyl-tRNA synthetases) or indirectly by tRNA-dependent transformation of misacylated tRNAs. The accuracy of aminoacyl-tRNA synthesis is enhanced by a number of further protein-RNA or protein-protein interactions, some of which are restricted to Archaea, and might reflect adaptation mechanisms to diverse conditions.


Assuntos
Aminoacil-RNA de Transferência/biossíntese , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/metabolismo , Estrutura Molecular
7.
Nucleic Acids Symp Ser ; (36): 2-4, 1997.
Artigo em Inglês | MEDLINE | ID: mdl-9478189

RESUMO

Aminoacyl-tRNAs are either synthesized directly by aminoacyl-tRNA synthetases or indirectly by tRNA-dependent transformation of mischarged tRNAs. The enzymes which participate in the indirect routes may be interesting targets in the development of novel therapeutic compounds. We have purified one such enzyme, Glu-tRNA(Gln) amidotransferase from Bacillus subtilis, to homogeneity and present the initial biochemical characterization data.


Assuntos
Bacillus subtilis/enzimologia , Transferases de Grupos Nitrogenados/metabolismo , Escherichia coli , Modelos Químicos , Transferases de Grupos Nitrogenados/química , Estrutura Terciária de Proteína , RNA Bacteriano/metabolismo
9.
J Biol Chem ; 270(29): 17264-7, 1995 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-7615526

RESUMO

Previously, we have demonstrated that the tRNA-guanine transglycosylase (TGT) from Escherichia coli is capable of utilizing an in vitro generated minihelix consisting of the anticodon stem and loop sequence of E. coli tRNA(Tyr) (Curnow, A. W., Kung, F. L., Koch, K. A., and Garcia, G. A. (1993) Biochemistry 32, 5239-5246). This suggests that the tRNA structural motifs necessary for recognition comprise a loop at the end of a short helix. To gain further insight into the structural requirements for TGT recognition, we have investigated the conformation of this minimal substrate. Thermal denaturation studies and kinetic analyses at 20 and 37 degrees C indicate that this minihelix is predominantly melted at 37 degrees C and that the melted conformation is not a substrate for TGT. This is confirmed by the determination that a non-helical analogue of the minihelix is not a substrate for TGT at either temperature. Two additional minihelices designed to be stable at 37 degrees C, ECYMH (a 4-base pair extension of the previous minihelix) and SCDMH (a yeast tRNA(Asp) analogue of ECYMH), were generated and characterized. Finally, several sequence mutants of SCDMH, focusing on the G30U40 base pair and U33G34U35 loop sequence, have been produced, and kinetic parameter determinations have been performed at 37 degrees C. Our results are consistent with a recent report (Nakanishi, S., Ueda, T., Hori, H., Yamazaki, N., Okada, N., and Watanabe, K. (1994) J. Biol. Chem. 269, 32221-32225) indicating that a UGU sequence in a 7-base loop is the minimal requirement for TGT recognition.


Assuntos
Escherichia coli/enzimologia , Pentosiltransferases/química , RNA de Transferência/química , Anticódon , Sequência de Bases , Cinética , Dados de Sequência Molecular , Conformação Proteica
10.
Biochemistry ; 34(11): 3694-701, 1995 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-7893665

RESUMO

tRNA-guanine transglycosylase (TGT) from Escherichia coli catalyzes the exchange of the queuine precursor, preQ1, into tRNA as part of the biosynthetic pathway for the posttranscriptionally modified base, queuine. No significant sequence homologies exist between TGT and any of the proteins in the GenBank database. However, an unusual arrangement of cysteine residues was observed upon manual examination of the TGT sequence. Comparison of this sequence (residues 302-321) revealed similarities to structural zinc-binding motifs in proteins of known structure [Jaffe (1993) Comments Inorg. Chem. 15, 67-93]. Within this region of the TGT sequence, there are six residues (four cysteines and two histidines), any four of which could serve as the ligands to the zinc. We report here that wild-type TGT contains ca. 0.8 mol of zinc/mol of subunit, determined by atomic emission spectrometry. In order to determine which enzyme residues are serving as the ligands to the zinc, site-directed mutagenesis studies have been performed. Gross structural probes (native PAGE and CD spectra), enzyme activity assays, and tRNA-binding assays indicate that cysteines 302, 304, and 307 and histidine 317 are the ligands to the zinc. These results also suggest that the zinc site is necessary for TGT homotrimer formation and for tRNA binding.


Assuntos
Escherichia coli/enzimologia , Pentosiltransferases/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Dicroísmo Circular , Clonagem Molecular , Primers do DNA , Diálise , Eletroforese em Gel de Poliacrilamida , Ligantes , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pentosiltransferases/química , Pentosiltransferases/genética , Fenantrolinas , Estrutura Secundária de Proteína
11.
Biochimie ; 76(12): 1183-91, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7748954

RESUMO

In order to probe the interaction between tRNA and the tRNA hypermodifying enzyme, tRNA-guanine transglycosylase (TGT) from Escherichia coli, we have undertaken the generation of E coli tRNA(Tyr) and analogues. During efforts to adapt currently available in vitro transcription techniques we encountered difficulties attributable to dimerization of the tRNA products. E coli tRNA(Tyr) has previously been characterized for its ability to form a dimer in solutions of suitable salt concentrations at appropriate temperatures (Yang SK, Söll DG, Crothers DM (1972) Biochemistry 11, 2311-2320; Rordorff BF, Kearns DR (1976) Biochemistry 15, 3320-3330). We have applied similar techniques to our unmodified analogue of E coli tRNA(Tyr) and produced both monomeric and dimeric forms of E coli tRNA(Tyr). In this report we find that the dimer does serve as a substrate for modification by TGT. While both the conformers are equal in terms of Vmax (within experimental error) a 2.5-fold increase in KM occurs when going from monomer to dimer. This suggests that TGT preferentially binds the monomer but once either conformer is bound will catalyze the modification reaction equally well. We have also compared the results for the two conformers to our previous data of an RNA minihelix corresponding to the anticodon arm of E coli tRNA(Tyr). Here we find that our earlier conclusion, that the recognition elements for TGT are localized within the anticodon arm of cognate tRNAs, is supported.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/genética , Pentosiltransferases/metabolismo , RNA de Transferência de Tirosina/química , RNA de Transferência de Tirosina/metabolismo , Sequência de Bases , Cinética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Pentosiltransferases/química
12.
Biochemistry ; 32(19): 5239-46, 1993 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-8494901

RESUMO

tRNA-guanine transglycosylase (TGT) is the enzyme responsible for the post-transcriptional modification of specific tRNAs (those for Asn, Asp, His, and Tyr) with the hypermodified base, queuine. In Escherichia coli this enzyme catalyzes the exchange of guanine-34 in the anticodon with preQ1, which is subsequently further modified to queuine. There is evidence that such hypermodified tRNA molecules may play a role in the control of cell proliferation and differentiation. In order to perform detailed, in vitro mechanistic studies and to probe the tRNA-enzyme interaction, we have generated unmodified E. coli tRNA(Tyr) and truncated analogues using an in vitro RNA synthesis system suggested by Milligan and Uhlenbeck [Milligan, J. F., & Uhlenbeck, O. C. (1989) Methods Enzymol. 180, 51-62]. From this system we have generated three tRNA analogues totally devoid of any post-transcriptional modifications. In order to compare the unmodified tRNA with the true physiological substrate for TGT, that is, tRNA that contains all modified bases except queuine, we have isolated E. coli tRNA(Tyr) from an overexpressing clone in a TGT-deficient strain of E. coli. We report here that unmodified, full-length tRNA(Tyr) serves as a substrate for TGT with kinetic parameters that are, within experimental error, the same as those for in vivo isolated tRNA(Tyr). This indicates that other post-transcriptional modifications have negligible effects upon TGT recognition of tRNA. A 17-base oligoribonucleotide, corresponding to the anticodon loop and stem, is also a substrate for TGT with only a 20-fold loss in Vmax/KM, versus the full-length tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)


Assuntos
Escherichia coli/enzimologia , Pentosiltransferases/metabolismo , RNA de Transferência de Tirosina/química , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Geobacillus stearothermophilus/genética , Cinética , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Plasmídeos , Reação em Cadeia da Polimerase , RNA de Transferência de Tirosina/genética , RNA de Transferência de Tirosina/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...