Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38611537

RESUMO

The combined morphological features of Stratiotes (Hydrocharitaceae) pollen, observed with light and electron microscopy, make it unique among all angiosperm pollen types and easy to identify. Unfortunately, the plant is (and most likely was) insect-pollinated and produces relatively few pollen grains per flower, contributing to its apparent absence in the paleopalynological record. Here, we present fossil Stratiotes pollen from the Eocene of Germany (Europe) and Kenya (Africa), representing the first reliable pre-Pleistocene pollen records of this genus worldwide and the only fossils of this family discovered so far in Africa. The fossil Stratiotes pollen grains are described and compared to pollen from a single modern species, Stratiotes aloides L. The paleophytogeographic significance and paleoecological aspects of these findings are discussed in relation to the Hydrocharitaceae fossil records and molecular phylogeny, as well as the present-day distribution patterns of its modern genera.

2.
Appl Plant Sci ; 12(1): e11566, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38369978

RESUMO

Premise: Leaf epidermal cell morphology is closely tied to the evolutionary history of plants and their growth environments and is therefore of interest to many plant biologists. However, cell measurement can be time consuming and restrictive with current methods. CuticleTrace is a suite of Fiji and R-based functions that streamlines and automates the segmentation and measurement of epidermal pavement cells across a wide range of cell morphologies and image qualities. Methods and Results: We evaluated CuticleTrace-generated measurements against those from alternate automated methods and expert and undergraduate hand tracings across a taxonomically diverse 50-image data set of variable image qualities. We observed ~93% statistical agreement between CuticleTrace and expert hand-traced measurements, outperforming alternate methods. Conclusions: CuticleTrace is a broadly applicable, modular, and customizable tool that integrates data visualization and cell shape measurement with image segmentation, lowering the barrier to high-throughput studies of epidermal morphology by vastly decreasing the labor investment required to generate high-quality cell shape data sets.

3.
Am J Bot ; 111(1): e16263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38014690

RESUMO

PREMISE: Plant traits and insect herbivory have been highly studied within the modern record but only to a limited extent within the paleontological. Preservation influences what can be measured within the fossil record, but modern methods are also not compatible with paleobotanical methods. To remedy this knowledge gap, a comparable framework was created here using modern and paleobotanical methods, allowing for future comparisons within the fossil record. METHODS: Insect feeding damage on selected tree species at Harvard Forest, the Smithsonian Environmental Research Center, and La Selva were characterized using the damage type system prevalent within paleobotanical studies and compared with leaf traits. Linear models and random forest analyses tested the influence of leaf traits on total, specialized, gall, and mine frequency and diversity. RESULTS: Structural traits like leaf dry mass per area and palatability traits, including lignin and phosphorus concentrations, are important variables affecting gall and mine damage. The significance and strength of trait-herbivory relationships varied across forest types, which is likely driven by differences in local insect populations. CONCLUSIONS: This work addresses the persistent gap between modern and paleoecological studies focusing on the influence of leaf traits on insect herbivory. This is important as modern climate change alters our understanding of plant-insect interactions, providing a need for contextualizing these relationships within evolutionary time. The fossil record provides information on terrestrial response to past climatic events and, thus, should be implemented when considering how to preserve biodiversity under current and future global change.


Assuntos
Ecossistema , Insetos , Animais , Insetos/fisiologia , Herbivoria , Biodiversidade , Folhas de Planta/fisiologia
4.
Sci Rep ; 13(1): 9701, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322107

RESUMO

Temporal patterns of plant-insect interactions are readily observed within fossil datasets but spatial variability is harder to disentangle without comparable modern methods due to limitations in preservation. This is problematic as spatial variability influences community structure and interactions. To address this we replicated paleobotanical methods within three modern forests, creating an analogous dataset that rigorously tested inter- and intra-forest plant-insect variability. Random mixed effects models, non-metric multidimensional scaling (NMDS) ordinations, and bipartite network- and node-level metrics were used. Total damage frequency and diversity did not differ across forests but differences in functional feeding groups (FFGs) were observed across forests, correlating with plant diversity, evenness, and latitude. Overall, we found higher generalized herbivory within the temperate forests than the wet-tropical, a finding also supported by co-occurrence and network analyses at multiple spatial scales. Intra-forest analyses captured consistent damage type communities, supporting paleobotanical efforts. Bipartite networks captured the feeding outbreak of Lymantria dispar caterpillars; an exciting result as insect outbreaks have long been unidentifiable within fossil datasets. These results support paleobotanical assumptions about fossil insect herbivore communities, provide a comparative framework between paleobotanical and modern communities, and suggest a new analytical framework for targeting modern and fossil outbreaks of insect feeding.


Assuntos
Herbivoria , Mariposas , Animais , Fósseis , Florestas , Insetos , Plantas , Árvores , Biodiversidade
5.
PLoS One ; 18(1): e0279491, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630378

RESUMO

Many tropical wet forests are species-rich and have relatively even species frequency distributions. But, dominance by a single canopy species can also occur in tropical wet climates and can remain stable for centuries. These are uncommon globally, with the African wet tropics supporting more such communities than the Neotropics or Southeast Asia. Differences in regional evolutionary histories are implied by biogeography: most of Africa's monodominance-forming species are Amherstieae-tribe legumes; monodominance in Neotropical forests occur among diverse taxonomic groups, often legumes, but rarely Amherstieae, and monodominance in Southeast Asian forests occurs mostly among Dipterocarpaceae species. African monodominant forests have been characterized ecologically and taxonomically, but their deep-time history is unknown despite their significant presence and bottom-up ecological influence on diversity. Herein we describe fossil leaflets of Englerodendron mulugetanum sp. nov., an extinct species of the extant genus Englerodendron (Berlinia Clade, Amherstieae, Detarioideae) from the 21.73 Ma Mush Valley site in Ethiopia. We also document a detailed study of associated legume pollen, which originate from a single taxon sharing characters with more than one extant descendant. Taxonomically, the pollen is most comparable to that from some extant Englerodendron species and supports a likely affiliation with the Englerodendron macrofossils. The Mush Valley site provides the first fossil evidence of a monodominant tropical forest in Africa as represented by leaflets and pollen. Previous studies documented >2400 leaves and leaflets from localities at six stratigraphic levels spanning 50,000-60,000 years of nearly continuous deposition within seven meters of section; all but the basal level contain ≥ 50% E. mulugetanum leaflets. Modern leaf litter studies in African mixed vs. monodominant forests indicates the likelihood of monodominance in the forests that surrounded the Mush paleolake, particularly after the basal level. Thus, we provide an early case for monodominance within the Amherstieae legumes in Africa.


Assuntos
Fabaceae , Etiópia , Árvores , Florestas , Evolução Biológica , Verduras , Clima Tropical
6.
Ecology ; 104(3): e3922, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36415050

RESUMO

Plants and their insect herbivores have been a dominant component of the terrestrial ecological landscape for the past 410 million years and feature intricate evolutionary patterns and co-dependencies. A complex systems perspective allows for both detailed resolution of these evolutionary relationships as well as comparison and synthesis across systems. Using proxy data of insect herbivore damage (denoted by the damage type or DT) preserved on fossil leaves, functional bipartite network representations provide insights into how plant-insect associations depend on geological time, paleogeographical space, and environmental variables such as temperature and precipitation. However, the metrics measured from such networks are prone to sampling bias. Such sensitivity is of special concern for plant-DT association networks in paleontological settings where sampling effort is often severely limited. Here, we explore the sensitivity of functional bipartite network metrics to sampling intensity and identify sampling thresholds above which metrics appear robust to sampling effort. Across a broad range of sampling efforts, we find network metrics to be less affected by sampling bias and/or sample size than richness metrics, which are routinely used in studies of fossil plant-DT interactions. These results provide reassurance that cross-comparisons of plant-DT networks offer insights into network structure and function and support their widespread use in paleoecology. Moreover, these findings suggest novel opportunities for using plant-DT networks in neontological terrestrial ecology to understand functional aspects of insect herbivory across geological time, environmental perturbations, and geographic space.


Assuntos
Benchmarking , Insetos , Animais , Viés de Seleção , Plantas , Folhas de Planta , Herbivoria
7.
Proc Natl Acad Sci U S A ; 119(42): e2202852119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215482

RESUMO

Fossilized leaves provide the longest running record of hyperdiverse plant-insect herbivore associations. Reconstructions of these relationships over deep time indicate strong links between environmental conditions, herbivore diversity, and feeding damage on leaves. However, herbivory has not been compared between the past and the modern era, which is characterized by intense anthropogenic environmental change. Here, we present estimates for damage frequencies and diversities on fossil leaves from the Late Cretaceous (66.8 Ma) through the Pleistocene (2.06 Ma) and compare these estimates with Recent (post-1955) leaves collected via paleobotanical methods from modern ecosystems: Harvard Forest, United States; the Smithsonian Environmental Research Center, United States; and La Selva, Costa Rica. Total damage frequency, measured as the percentage of leaves with any herbivore damage, within modern ecosystems is greater than any fossil locality within this record. This pattern is driven by increased frequencies across nearly all functional feeding groups within the Recent. Diversities of total, specialized, and mining damage types are elevated within the Recent compared with fossil floras. Our results demonstrate that plants in the modern era are experiencing unprecedented levels of insect damage, despite widespread insect declines. Human influence, such as the rate of global climate warming, influencing insect feeding and timing of life cycle processes along with urbanization and the introduction of invasive plant and insect species may drive elevated herbivory. This research suggests that the strength of human influence on plant-insect interactions is not controlled by climate change alone but rather, the way in which humans interact with terrestrial landscape.


Assuntos
Fósseis , Herbivoria , Animais , Ecossistema , Florestas , Humanos , Insetos , Folhas de Planta , Plantas
8.
Ecol Evol ; 11(10): 5164-5186, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34025999

RESUMO

Fossil pollen believed to be related to extant Hagenia abyssinica were discovered in the early Miocene (21.73 Ma) Mush Valley paleoflora, Ethiopia, Africa. Both the fossil and extant pollen grains of H. abyssinica were examined with combined light microscopy, scanning electron microscopy, and transmission electron microscopy to compare the pollen and establish their relationships. Based on this, the fossil pollen grains were attributed to Hagenia. The presence of Hagenia in the fossil assemblage raises the questions if its habitat has changed over time, and if the plants are/were wind pollinated. To shed light on these questions, the morphology of extant anthers was also studied, revealing specialized hairs inside the anthers, believed to aid in insect pollination. Pollen and anther morphology are discussed in relation to the age and origin of the genus within a molecular dated phylogenetic framework, the establishment of complex topography in East Africa, other evidence regarding pollination modes, and the palynological record. The evidence presented herein, and compiled from the literature, suggests that Hagenia was an insect-pollinated lowland rainforest element during the early Miocene of the Mush Valley. The current Afromontane habitat and ambophilous (insect and wind) pollination must have evolved in post-mid-Miocene times.

9.
Science ; 372(6537): 28-29, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33795445
10.
PeerJ ; 7: e7798, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31637117

RESUMO

Ecosystem function and stability are highly affected by internal and external stressors. Utilizing paleobotanical data gives insight into the evolutionary processes an ecosystem undergoes across long periods of time, allowing for a more complete understanding of how plant and insect herbivore communities are affected by ecosystem imbalance. To study how plant and insect herbivore communities change during times of disturbance, we quantified community turnover across the Paleocene--Eocene boundary in the Hanna Basin, southeastern Wyoming. This particular location is unlike other nearby Laramide basins because it has an abundance of late Paleocene and Eocene coal and carbonaceous shales and paucity of well-developed paleosols, suggesting perpetually high water availability. We sampled approximately 800 semi-intact dicot leaves from five stratigraphic levels, one of which occurs late in the Paleocene-Eocene thermal maximum (PETM). Field collections were supplemented with specimens at the Denver Museum of Nature & Science. Fossil leaves were classified into morphospecies and herbivore damage was documented for each leaf. We tested for changes in plant and insect herbivore damage diversity using rarefaction and community composition using non-metric multidimensional scaling ordinations. We also documented changes in depositional environment at each stratigraphic level to better contextualize the environment of the basin. Plant diversity was highest during the mid-late Paleocene and decreased into the Eocene, whereas damage diversity was highest at the sites with low plant diversity. Plant communities significantly changed during the late PETM and do not return to pre-PETM composition. Insect herbivore communities also changed during the PETM, but, unlike plant communities, rebound to their pre-PETM structure. These results suggest that insect herbivore communities responded more strongly to plant community composition than to the diversity of species present.

11.
Grana ; 58(4): 227-275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275086

RESUMO

The pantropical Picrodendraceae produce mostly spheroidal to slightly oblate, echinate pollen grains equipped with narrow circular to elliptic pori that can be hard to identify to family level in both extant and fossil material using light microscopy only. Fossil pollen of the family have been described from the Paleogene of America, Antarctica, Australia, New Zealand, and Europe, but until now none have been reported from Afro-India. Extant pollen described here include representatives from all recent Picrodendraceae genera naturally occurring in Africa and/or Madagascar and south India and selected closely related tropical American taxa. Our analyses, using combined light microscopy and scanning electron microscopy, show that pollen of the Afro-Indian genera encompass three morphological types: Type 1, comprising only Hyaenanche; Type 2, including Aristogeitonia, Mischodon, Oldfieldia and Voatamalo; Type 3, comprising the remaining two genera, Androstachys and Stachyandra. Based on the pollen morphology presented here it is evident that some previous light microscopic accounts of spherical and echinate fossil pollen affiliated with Arecaceae, Asteraceae, Malvaceae, and Myristicaceae from the African continent could belong to Picrodendraceae. The pollen morphology of Picrodendraceae, fossil pollen records, a dated intra-familial phylogeny, seed dispersal modes, and the regional Late Cretaceous to early Cenozoic paleogeography, together suggest the family originated in the Americas and dispersed from southern America across Antarctica and into Australasia. A second dispersal route is believed to have occurred from the Americas into continental Africa via the North Atlantic Land Bridge and Europe.

12.
Ecol Evol ; 6(13): 4318-31, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27386078

RESUMO

Paleoecological studies document the net effects of atmospheric and climate change in a natural laboratory over timescales not accessible to laboratory or ecological studies. Insect feeding damage is visible on well-preserved fossil leaves, and changes in leaf damage through time can be compared to environmental changes. We measured percent leaf area damaged on four fossil leaf assemblages from the Bighorn Basin, Wyoming, that range in age from 56.1 to 52.65 million years (Ma). We also include similar published data from three US sites 49.4 to ~45 Ma in our analyses. Regional climate was subtropical or warmer throughout this period, and the second oldest assemblage (56 Ma) was deposited during the Paleocene-Eocene Thermal Maximum (PETM), a geologically abrupt global warming event caused by massive release of carbon into the atmosphere. Total and leaf-chewing damage are highest during the PETM, whether considering percent area damaged on the bulk flora, the average of individual host plants, or a single plant host that occurs at multiple sites. Another fossil assemblage in our study, the 52.65 Ma Fifteenmile Creek paleoflora, also lived during a period of globally high temperature and pCO 2, but does not have elevated herbivory. Comparison of these two sites, as well as regression analyses conducted on the entire dataset, demonstrates that, over long timescales, temperature and pCO 2 are uncorrelated with total insect consumption at the ecosystem level. Rather, the most important factor affecting herbivory is the relative abundance of plants with nitrogen-fixing symbionts. Legumes dominate the PETM site; their prevalence would have decreased nitrogen limitation across the ecosystem, buffering generalist herbivore populations against decreased leaf nutritional quality that commonly occurs at high pCO 2. We hypothesize that nitrogen concentration regulates the opposing effects of elevated temperature and CO 2 on insect abundance and thereby total insect consumption, which has important implications for agricultural practices in today's world of steadily increasing pCO 2.

13.
Proc Natl Acad Sci U S A ; 112(41): 12592-7, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26417094

RESUMO

In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.


Assuntos
Fósseis , Melaninas , Melanossomas/ultraestrutura , Animais , Bactérias , Pigmentação
14.
PLoS One ; 9(5): e94950, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24788720

RESUMO

The fossil record demonstrates that past climate changes and extinctions significantly affected the diversity of insect leaf-feeding damage, implying that the richness of damage types reflects that of the unsampled damage makers, and that the two are correlated through time. However, this relationship has not been quantified for living leaf-chewing insects, whose richness and mouthpart convergence have obscured their value for understanding past and present herbivore diversity. We hypothesized that the correlation of leaf-chewing damage types (DTs) and damage maker richness is directly observable in living forests. Using canopy access cranes at two lowland tropical rainforest sites in Panamá to survey 24 host-plant species, we found significant correlations between the numbers of leaf chewing insect species collected and the numbers of DTs observed to be made by the same species in feeding experiments, strongly supporting our hypothesis. Damage type richness was largely driven by insect species that make multiple DTs. Also, the rank-order abundances of DTs recorded at the Panamá sites and across a set of latest Cretaceous to middle Eocene fossil floras were highly correlated, indicating remarkable consistency of feeding-mode distributions through time. Most fossil and modern host-plant pairs displayed high similarity indices for their leaf-chewing DTs, but informative differences and trends in fossil damage composition became apparent when endophytic damage was included. Our results greatly expand the potential of insect-mediated leaf damage for interpreting insect herbivore richness and compositional heterogeneity from fossil floras and, equally promisingly, in living forests.


Assuntos
Biodiversidade , Florestas , Herbivoria , Insetos , Folhas de Planta , Animais , Fósseis
15.
Am J Bot ; 100(7): 1234-54, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23825133

RESUMO

PREMISE OF THE STUDY: The fossil record provides information about the long-term response of plants to CO2-induced climate change. The Paleocene-Eocene Thermal Maximum (PETM), a 200000-yr-long period of rapid carbon release and warming that occurred ∼56 million years ago, is analogous to future anthropogenic global warming. METHODS: We collected plant macrofossils in the Bighorn Basin, Wyoming, United States, from a period spanning the PETM and studied changes in floristic composition. We also compiled and summarized published records of floristic change during the PETM. KEY RESULTS: There was radical floristic change in the Bighorn Basin during the PETM reflecting local or regional extirpation of mesophytic plants, notably conifers, and colonization of the area by thermophilic and dry-tolerant species, especially Fabaceae. This floristic change largely reversed itself as the PETM ended, though some immigrant species persisted and some Paleocene species never returned. Less detailed records from other parts of the world show regional variation in floristic response, but are mostly consistent with the Bighorn Basin trends. CONCLUSIONS: Despite geologically rapid extirpation, colonization, and recolonization, we detected little extinction during the PETM, suggesting the rate of climate change did not exceed the dispersal capacity of terrestrial plants. Extrapolating the response of plants from the PETM to future anthropogenic climate change likely underestimates risk because rates of climate change during the PETM may have been an order of magnitude slower than current rates of change and because the abundant, widespread species common as fossils are likely resistant to extinction.


Assuntos
Evolução Biológica , Mudança Climática , Fósseis , Plantas/classificação , Plantas/genética , Dinâmica Populacional , Fatores de Tempo
16.
PLoS One ; 7(12): e52455, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23285049

RESUMO

Nearly all data regarding land-plant turnover across the Cretaceous/Paleogene boundary come from western North America, relatively close to the Chicxulub, Mexico impact site. Here, we present a palynological analysis of a section in Patagonia that shows a marked fall in diversity and abundance of nearly all plant groups across the K/Pg interval. Minimum diversity occurs during the earliest Danian, but only a few palynomorphs show true extinctions. The low extinction rate is similar to previous observations from New Zealand. The differing responses between the Southern and Northern hemispheres could be related to the attenuation of damage with increased distance from the impact site, to hemispheric differences in extinction severity, or to both effects. Legacy effects of the terminal Cretaceous event also provide a plausible, partial explanation for the fact that Paleocene and Eocene macrofloras from Patagonia are among the most diverse known globally. Also of great interest, earliest Danian assemblages are dominated by the gymnosperm palynomorphs Classopollis of the extinct Mesozoic conifer family Cheirolepidiaceae. The expansion of Classopollis after the boundary in Patagonia is another example of typically Mesozoic plant lineages surviving into the Cenozoic in southern Gondwanan areas, and this greatly supports previous hypotheses of high latitude southern regions as biodiversity refugia during the end-Cretaceous global crisis.


Assuntos
Biodiversidade , Cycadopsida/crescimento & desenvolvimento , Extinção Biológica , Flores/crescimento & desenvolvimento , Argentina , Geografia , Pólen , Esporos , Fatores de Tempo
17.
New Phytol ; 190(3): 724-39, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21294735

RESUMO

• Paleobotanists have long used models based on leaf size and shape to reconstruct paleoclimate. However, most models incorporate a single variable or use traits that are not physiologically or functionally linked to climate, limiting their predictive power. Further, they often underestimate paleotemperature relative to other proxies. • Here we quantify leaf-climate correlations from 92 globally distributed, climatically diverse sites, and explore potential confounding factors. Multiple linear regression models for mean annual temperature (MAT) and mean annual precipitation (MAP) are developed and applied to nine well-studied fossil floras. • We find that leaves in cold climates typically have larger, more numerous teeth, and are more highly dissected. Leaf habit (deciduous vs evergreen), local water availability, and phylogenetic history all affect these relationships. Leaves in wet climates are larger and have fewer, smaller teeth. Our multivariate MAT and MAP models offer moderate improvements in precision over univariate approaches (± 4.0 vs 4.8°C for MAT) and strong improvements in accuracy. For example, our provisional MAT estimates for most North American fossil floras are considerably warmer and in better agreement with independent paleoclimate evidence. • Our study demonstrates that the inclusion of additional leaf traits that are functionally linked to climate improves paleoclimate reconstructions. This work also illustrates the need for better understanding of the impact of phylogeny and leaf habit on leaf-climate relationships.


Assuntos
Clima , Internacionalidade , Paleontologia , Folhas de Planta/anatomia & histologia , Calibragem , Fósseis , Geografia , Modelos Biológicos , Tamanho do Órgão , Filogenia , Chuva , Análise de Regressão , Especificidade da Espécie , Temperatura
18.
Proc Biol Sci ; 276(1677): 4271-7, 2009 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-19776074

RESUMO

Insect herbivores are considered vulnerable to extinctions of their plant hosts. Previous studies of insect-damaged fossil leaves in the US Western Interior showed major plant and insect herbivore extinction at the Cretaceous-Palaeogene (K-T) boundary. Further, the regional plant-insect system remained depressed or ecologically unbalanced throughout the Palaeocene. Whereas Cretaceous floras had high plant and insect-feeding diversity, all Palaeocene assemblages to date had low richness of plants, insect feeding or both. Here, we use leaf fossils from the middle Palaeocene Menat site, France, which has the oldest well-preserved leaf assemblage from the Palaeocene of Europe, to test the generality of the observed Palaeocene US pattern. Surprisingly, Menat combines high floral diversity with high insect activity, making it the first observation of a 'healthy' Palaeocene plant-insect system. Furthermore, rich and abundant leaf mines across plant species indicate well-developed host specialization. The diversity and complexity of plant-insect interactions at Menat suggest that the net effects of the K-T extinction were less at this greater distance from the Chicxulub, Mexico, impact site. Along with the available data from other regions, our results show that the end-Cretaceous event did not cause a uniform, long-lasting depression of global terrestrial ecosystems. Rather, it gave rise to varying regional patterns of ecological collapse and recovery that appear to have been strongly influenced by distance from the Chicxulub structure.


Assuntos
Biodiversidade , Cadeia Alimentar , Fósseis , Insetos/fisiologia , Folhas de Planta/anatomia & histologia , Árvores , Animais , Extinção Biológica , Comportamento Alimentar/fisiologia , França , Folhas de Planta/parasitologia
19.
Proc Natl Acad Sci U S A ; 105(6): 1960-4, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18268338

RESUMO

The Paleocene-Eocene Thermal Maximum (PETM, 55.8 Ma), an abrupt global warming event linked to a transient increase in pCO2, was comparable in rate and magnitude to modern anthropogenic climate change. Here we use plant fossils from the Bighorn Basin of Wyoming to document the combined effects of temperature and pCO2 on insect herbivory. We examined 5,062 fossil leaves from five sites positioned before, during, and after the PETM (59-55.2 Ma). The amount and diversity of insect damage on angiosperm leaves, as well as the relative abundance of specialized damage, correlate with rising and falling temperature. All reach distinct maxima during the PETM, and every PETM plant species is extensively damaged and colonized by specialized herbivores. Our study suggests that increased insect herbivory is likely to be a net long-term effect of anthropogenic pCO2 increase and warming temperatures.


Assuntos
Comportamento Alimentar , Insetos/fisiologia , Plantas , Animais , Clima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...