Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 200(5): 456-461, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37758035

RESUMO

Diffuse intrinsic pontine gliomas (DIPG) are an aggressive type of pediatric brain tumor with a very high mortality rate. Surgery has a limited role given the tumor's location. Palliative radiation therapy alleviates symptoms and prolongs survival, but median survival remains less than 1 year. There is no clear role for chemotherapy in DIPGs as trials adding chemotherapy to palliative radiation therapy have failed to improve survival compared to radiation alone. Thus, there is a critical need to identify tissue-specific radiosensitizers to improve clinical outcomes for patients with DIPGs. Pharmacologic (high dose) ascorbate (P-AscH-) is a promising anticancer therapy that sensitizes human tumors, including adult high-grade gliomas, to radiation by acting selectively as a generator of hydrogen peroxide (H2O2) in cancer cells. In this study we demonstrate that in contrast to adult glioma models, P-AscH- does not radiosensitize DIPG. DIPG cells were sensitive to bolus of H2O2 but have faster H2O2 removal rates than GBM models which are radiosensitized by P-AscH-. These data support the hypothesis that P-AscH- does not enhance DIPG radiosensitivity, likely due to a robust capacity to detoxify and remove hydroperoxides.


Assuntos
Antineoplásicos , Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Criança , Adulto , Humanos , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Glioma Pontino Intrínseco Difuso/patologia , Neoplasias do Tronco Encefálico/radioterapia , Neoplasias do Tronco Encefálico/patologia , Peróxidos/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/uso terapêutico , Glioma/radioterapia , Glioma/patologia , Antineoplásicos/uso terapêutico
2.
J Nucl Med ; 62(7): 989-995, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33277393

RESUMO

Prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) is effective against prostate cancer (PCa), but all patients relapse eventually. Poor understanding of the underlying resistance mechanisms represents a key barrier to development of more effective RLT. We investigate the proteome and phosphoproteome in a mouse model of PCa to identify signaling adaptations triggered by PSMA RLT. Methods: Therapeutic efficacy of PSMA RLT was assessed by tumor volume measurements, time to progression, and survival in C4-2 or C4-2 TP53-/- tumor-bearing nonobese diabetic scid γ-mice. Two days after RLT, the proteome and phosphoproteome were analyzed by mass spectrometry. Results: PSMA RLT significantly improved disease control in a dose-dependent manner. Proteome and phosphoproteome datasets revealed activation of genotoxic stress response pathways, including deregulation of DNA damage/replication stress response, TP53, androgen receptor, phosphatidylinositol-3-kinase/AKT, and MYC signaling. C4-2 TP53-/- tumors were less sensitive to PSMA RLT than were parental counterparts, supporting a role for TP53 in mediating RLT responsiveness. Conclusion: We identified signaling alterations that may mediate resistance to PSMA RLT in a PCa mouse model. Our data enable the development of rational synergistic RLT-combination therapies to improve outcomes for PCa patients.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Próstata , Antígeno Prostático Específico
3.
J Nucl Med ; 62(2): 228-231, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32646877

RESUMO

Prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy (RNT) may increase tumor immunogenicity. We aimed at exploiting this effect by combining RNT with immunotherapy in a mouse model of prostate cancer (PC). Methods: C57BL/6-mice bearing syngeneic RM1-PGLS tumors were treated with 225Ac-PSMA617, an anti-PD-1 antibody, or both. Therapeutic efficacy was assessed by tumor volume measurements (CT), time to progression (TTP), and survival. Results: PSMA RNT or anti-PD-1 alone tended to prolong TTP (isotype control, 25 d; anti-PD-1, 33.5 d [P = 0.0153]; RNT, 30 d [P = 0.1038]) and survival (control, 28 d; anti-PD-1, 37 d [P = 0.0098]; RNT, 32 d [P = 0.1018]). Combining PSMA RNT and anti-PD-1 significantly improved disease control compared with either monotherapy. TTP was extended to 47.5 d (P ≤ 0.0199 vs. monotherapies), and survival to 51.5 d (P ≤ 0.0251 vs. monotherapies). Conclusion: PSMA RNT and PD-1 blockade synergistically improve therapeutic outcomes in our PC model, supporting the evaluation of RNT and immunotherapy combinations for PC patients.


Assuntos
Dipeptídeos/uso terapêutico , Compostos Heterocíclicos com 1 Anel/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/radioterapia , Actínio , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Antígeno Prostático Específico , Neoplasias da Próstata/patologia
4.
Clin Cancer Res ; 26(12): 2946-2955, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-31932492

RESUMO

PURPOSE: Prostate-specific membrane antigen (PSMA) targeting radioligands deliver radiation to PSMA-expressing cells. However, the relationship between PSMA levels and intralesion heterogeneity of PSMA expression, and cytotoxic radiation by radioligand therapy (RLT) is unknown. Here we investigate RLT efficacy as function of PSMA levels/cell, and the fraction of PSMA+ cells in a tumor. EXPERIMENTAL DESIGN: RM1 cells expressing different levels of PSMA (PSMA-, PSMA+, PSMA++, PSMA+++; study 1) or a mix of PSMA+ and PSMA- RM1 (study 2, 4) or PC-3/PC-3-PIP (study 3) cells at various ratios were injected into mice. Mice received 177Lu- (studies 1-3) or 225Ac- (study 4) PSMA617. Tumor growth was monitored. Two days post-RLT, tumors were resected in a subset of mice. Radioligand uptake and DNA damage were quantified. RESULTS: 177Lu-PSMA617 efficacy increased with increasing PSMA levels (study 1) and fractions of PSMA positive cells (studies 2, 3) in both, the RM1 and PC-3-PIP models. In tumors resected 2 days post-RLT, PSMA expression correlated with 177Lu-PSMA617 uptake and the degree of DNA damage. Compared with 177Lu-PSMA617, 225Ac-PSMA617 improved overall antitumor effectiveness and tended to enhance the differences in therapeutic efficacy between experimental groups. CONCLUSIONS: In the current models, both the degree of PSMA expression and the fraction of PSMA+ cells correlate with 177Lu-/225Ac-PSMA617 tumor uptake and DNA damage, and thus, RLT efficacy. Low or heterogeneous PSMA expression represents a resistance mechanism to RLT.See related commentary by Ravi Kumar and Hofman, p. 2774.


Assuntos
Antígenos de Superfície , Antígeno Prostático Específico , Animais , Antígenos de Superfície/metabolismo , Dano ao DNA , Ligantes , Masculino , Camundongos , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...