Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 39(6): 110801, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35545038

RESUMO

Motor cortex generates descending output necessary for executing a wide range of limb movements. Although movement-related activity has been described throughout motor cortex, the spatiotemporal organization of movement-specific signaling in deep layers remains largely unknown. Here we record layer 5B population dynamics in the caudal forelimb area of motor cortex while mice perform a forelimb push/pull task and find that most neurons show movement-invariant responses, with a minority displaying movement specificity. Using cell-type-specific imaging, we identify that invariant responses dominate pyramidal tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger proportion of intratelencephalic (IT) neurons display movement-type-specific signaling. The proportion of IT neurons decoding movement-type peaks prior to movement initiation, whereas for PT neurons, this occurs during movement execution. Our data suggest that layer 5B population dynamics largely reflect movement-invariant signaling, with information related to movement-type being routed through relatively small, distributed subpopulations of projection neurons.


Assuntos
Córtex Motor , Animais , Membro Anterior/fisiologia , Camundongos , Córtex Motor/fisiologia , Movimento/fisiologia , Neurônios/fisiologia , Tratos Piramidais/fisiologia
2.
Curr Biol ; 30(10): 1866-1880.e5, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32243857

RESUMO

The potential for neuronal representations of external stimuli to be modified by previous experience is critical for efficient sensory processing and improved behavioral outcomes. To investigate how repeated exposure to a visual stimulus affects its representation in mouse primary visual cortex (V1), we performed two-photon calcium imaging of layer 2/3 neurons and assessed responses before, during, and after the presentation of a repetitive stimulus over 5 consecutive days. We found a stimulus-specific enhancement of the neuronal representation of the repetitively presented stimulus when it was associated with a reward. This was observed both after mice actively learned a rewarded task and when the reward was randomly received. Stimulus-specific enhanced representation resulted both from neurons gaining selectivity and from increased response reliability in previously selective neurons. In the absence of reward, there was either no change in stimulus representation or a decreased representation when the stimulus was viewed at a fixed temporal frequency. Pairing a second stimulus with a reward led to a similar enhanced representation and increased discriminability between the equally rewarded stimuli. Single-neuron responses showed that separate subpopulations discriminated between the two rewarded stimuli depending on whether the stimuli were displayed in a virtual environment or viewed on a single screen. We suggest that reward-associated responses enable the generalization of enhanced stimulus representation across these V1 subpopulations. We propose that this dynamic regulation of visual processing based on the behavioral relevance of sensory input ultimately enhances and stabilizes the representation of task-relevant features while suppressing responses to non-relevant stimuli.


Assuntos
Recompensa , Córtex Visual/fisiologia , Água , Animais , Ingestão de Líquidos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Orientação
3.
Cell Rep ; 24(10): 2521-2528, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184487

RESUMO

The integration of visual stimuli and motor feedback is critical for successful visually guided navigation. These signals have been shown to shape neuronal activity in the primary visual cortex (V1), in an experience-dependent manner. Here, we examined whether visual, reward, and self-motion-related inputs are integrated in order to encode behaviorally relevant locations in V1 neurons. Using a behavioral task in a virtual environment, we monitored layer 2/3 neuronal activity as mice learned to locate a reward along a linear corridor. With learning, a subset of neurons became responsive to the expected reward location. Without a visual cue to the reward location, both behavioral and neuronal responses relied on self-motion-derived estimations. However, when visual cues were available, both neuronal and behavioral responses were driven by visual information. Therefore, a population of V1 neurons encode behaviorally relevant spatial locations, based on either visual cues or on self-motion feedback when visual cues are absent.


Assuntos
Recompensa , Córtex Visual/fisiologia , Animais , Retroalimentação , Feminino , Masculino , Camundongos , Destreza Motora/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Comportamento Espacial/fisiologia
4.
J Neurophysiol ; 119(3): 786-795, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29142093

RESUMO

We describe a novel preparation of the isolated brain stem and spinal cord from prometamorphic tadpole stages of the South African clawed frog ( Xenopus laevis) that permits whole cell patch-clamp recordings from neurons in the ventral spinal cord. Previous research on earlier stages of the same species has provided one of the most detailed understandings of the design and operation of a central pattern generator circuit. Here we have addressed how development sculpts complexity from this more basic circuit. The preparation generates bouts of fictive swimming activity either spontaneously or in response to electrical stimulation of the optic tectum, allowing an investigation into how the neuronal properties, activity patterns, and neuromodulation of locomotor rhythm generation change during development. We describe an increased repertoire of cellular responses compared with younger larval stages and investigate the cellular-level effects of nitrergic neuromodulation as well as the development of a sodium pump-mediated ultraslow afterhyperpolarization (usAHP) in these free-swimming larval animals. NEW & NOTEWORTHY A novel in vitro brain stem-spinal cord preparation is described that enables whole cell patch-clamp recordings from spinal neurons in prometamorphic Xenopus tadpoles. Compared with the well-characterized earlier stages of development, spinal neurons display a wider range of firing properties during swimming and have developed novel cellular properties. This preparation now makes it feasible to investigate in detail spinal central pattern generator maturation during the dramatic switch between undulatory and limb-based locomotion strategies during amphibian metamorphosis.


Assuntos
Tronco Encefálico/fisiologia , Geradores de Padrão Central , Neurônios/fisiologia , Medula Espinal/crescimento & desenvolvimento , Raízes Nervosas Espinhais/fisiologia , Natação , Xenopus laevis/fisiologia , Potenciais de Ação , Animais , Larva/fisiologia , Neurônios Motores/fisiologia , Vias Neurais/fisiologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/administração & dosagem , Óxido Nítrico/fisiologia , Medula Espinal/efeitos dos fármacos
6.
Epilepsia ; 58(4): 597-607, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28195311

RESUMO

OBJECTIVE: Absence seizures in childhood absence epilepsy are initiated in the thalamocortical (TC) system. We investigated if these seizures result from altered development of the TC system before the appearance of seizures in mice containing a point mutation in γ-aminobutyric acid A (GABAA ) receptor γ2 subunits linked to childhood absence epilepsy (R43Q). Findings from conditional mutant mice indicate that expression of normal γ2 subunits during preseizure ages protect from later seizures. This indicates that altered development in the presence of the R43Q mutation is a key contributor to the R43Q phenotype. We sought to identify the cellular processes affected by the R43Q mutation during these preseizure ages. METHODS: We examined landmarks of synaptic development at the end of the critical period for somatosensory TC plasticity using electrophysiologic recordings in TC brain slices from wild-type mice and R43Q mice. RESULTS: We found that the level of TC connectivity to layer 4 (L4) principal cells and the properties of TC synapses were unaltered in R43Q mice. Furthermore, we show that, although TC feedforward inhibition and the total level of GABAergic inhibition were normal, there was a reduction in the local connectivity to cortical interneurons. This reduction leads to altered inhibition during bursts of cortical activity. SIGNIFICANCE: This altered inhibition demonstrates that alterations in cortical circuitry precede the onset of seizures by more than a week.


Assuntos
Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/patologia , Interneurônios/fisiologia , Mutação Puntual/genética , Receptores de GABA-A/genética , Córtex Somatossensorial/patologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Arginina/genética , Modelos Animais de Doenças , Feminino , Ácido Glutâmico/genética , Técnicas In Vitro , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp
7.
PLoS One ; 12(2): e0171897, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178342

RESUMO

New synapses are constantly being generated and lost in the living brain with only a subset of these being stabilized to form an enduring component of neuronal circuitry. The properties of synaptic transmission have primarily been established in a variety of in vitro neuronal preparations. It is not clear, however, if newly-formed and persistent synapses contribute to the results of these studies consistently throughout the lifespan of these preparations. In neonatal somatosensory, barrel, cortex we have previously hypothesized that a population of thalamocortical synapses displaying unusually slow kinetics represent newly-formed, default-transient synapses. This clear phenotype would provide an ideal tool to investigate if such newly formed synapses consistently contribute to synaptic transmission throughout a normal experimental protocol. We show that the proportion of synapses recorded in vitro displaying slow kinetics decreases with time after brain slice preparation. However, slow synapses persist in vitro in the presence of either minocycline, an inhibitor of microglia-mediated synapse elimination, or the TrkB agonist 7,8-dihydroxyflavone a promoter of synapse formation. These findings show that the observed properties of synaptic transmission may systematically change with time in vitro in a standard brain slice preparation.


Assuntos
Córtex Cerebral/fisiologia , Sinapses/fisiologia , Tálamo/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Flavonas/farmacologia , Cinética , Camundongos , Microglia/metabolismo , Receptor trkB/agonistas , Sinapses/efeitos dos fármacos , Transmissão Sináptica
8.
Elife ; 52016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27552056

RESUMO

Cortical responses to sensory stimuli are modulated by behavioral state. In the primary visual cortex (V1), visual responses of pyramidal neurons increase during locomotion. This response gain was suggested to be mediated through inhibitory neurons, resulting in the disinhibition of pyramidal neurons. Using in vivo two-photon calcium imaging in layers 2/3 and 4 in mouse V1, we reveal that locomotion increases the activity of vasoactive intestinal peptide (VIP), somatostatin (SST) and parvalbumin (PV)-positive interneurons during visual stimulation, challenging the disinhibition model. In darkness, while most VIP and PV neurons remained locomotion responsive, SST and excitatory neurons were largely non-responsive. Context-dependent locomotion responses were found in each cell type, with the highest proportion among SST neurons. These findings establish that modulation of neuronal activity by locomotion is context-dependent and contest the generality of a disinhibitory circuit for gain control of sensory responses by behavioral state.


Assuntos
Comportamento Animal , Locomoção , Córtex Visual/fisiologia , Animais , Interneurônios/fisiologia , Camundongos , Modelos Neurológicos , Células Piramidais/fisiologia
9.
Hum Mol Genet ; 25(18): 4052-4061, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466188

RESUMO

Genetic mutations known to cause intellectual disabilities (IDs) are concentrated in specific sets of genes including both those encoding synaptic proteins and those expressed during early development. We have characterized the effect of genetic deletion of Dlg3, an ID-related gene encoding the synaptic NMDA-receptor interacting protein synapse-associated protein 102 (SAP102), on development of the mouse somatosensory cortex. SAP102 is the main representative of the PSD-95 family of postsynaptic MAGUK proteins during early development and is proposed to play a role in stabilizing receptors at immature synapses. Genetic deletion of SAP102 caused a reduction in the total number of thalamocortical (TC) axons innervating the somatosensory cortex, but did not affect the segregation of barrels. On a synaptic level SAP102 knockout mice display a transient speeding of NMDA receptor kinetics during the critical period for TC plasticity, despite no reduction in GluN2B-mediated component of synaptic transmission. These data indicated an interesting dissociation between receptor kinetics and NMDA subunit expression. Following the critical period NMDA receptor function was unaffected by loss of SAP102 but there was a reduction in the divergence of TC connectivity. These data suggest that changes in synaptic function early in development caused by mutations in SAP102 result in changes in network connectivity later in life.


Assuntos
Desenvolvimento Embrionário/genética , Guanilato Quinases/genética , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Córtex Somatossensorial/crescimento & desenvolvimento , Animais , Humanos , Deficiência Intelectual/fisiopatologia , Camundongos , Camundongos Knockout , Receptores de N-Metil-D-Aspartato/genética , Deleção de Sequência , Córtex Somatossensorial/patologia , Transmissão Sináptica/genética
10.
Proc Natl Acad Sci U S A ; 113(21): 6053-8, 2016 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-27166423

RESUMO

Nonvisual photoreceptors are widely distributed in the retina and brain, but their roles in animal behavior remain poorly understood. Here we document a previously unidentified form of deep-brain photoreception in Xenopus laevis frog tadpoles. The isolated nervous system retains sensitivity to light even when devoid of input from classical eye and pineal photoreceptors. These preparations produce regular bouts of rhythmic swimming activity in ambient light but fall silent in the dark. This sensitivity is tuned to short-wavelength UV light; illumination at 400 nm initiates motor activity over a broad range of intensities, whereas longer wavelengths do not cause a response. The photosensitive tissue is located in a small region of caudal diencephalon-this region is necessary to retain responses to illumination, whereas its focal illumination is sufficient to drive them. We present evidence for photoreception via the light-sensitive proteins opsin (OPN)5 and/or cryptochrome 1, because populations of OPN5-positive and cryptochrome-positive cells reside within the caudal diencephalon. This discovery represents a hitherto undescribed vertebrate pathway that links luminance detection to motor output. The pathway provides a simple mechanism for light avoidance and/or may reinforce classical circadian systems.


Assuntos
Criptocromos/metabolismo , Diencéfalo/metabolismo , Opsinas/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas de Xenopus/metabolismo , Animais , Diencéfalo/citologia , Larva , Células Fotorreceptoras/citologia , Xenopus laevis
11.
J Neurophysiol ; 115(3): 1446-57, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26763775

RESUMO

Locomotor control requires functional flexibility to support an animal's full behavioral repertoire. This flexibility is partly endowed by neuromodulators, allowing neural networks to generate a range of motor output configurations. In hatchling Xenopus tadpoles, before the onset of free-swimming behavior, the gaseous modulator nitric oxide (NO) inhibits locomotor output, shortening swim episodes and decreasing swim cycle frequency. While populations of nitrergic neurons are already present in the tadpole's brain stem at hatching, neurons positive for the NO-synthetic enzyme, NO synthase, subsequently appear in the spinal cord, suggesting additional as yet unidentified roles for NO during larval development. Here, we first describe the expression of locomotor behavior during the animal's change from an early sessile to a later free-swimming lifestyle and then compare the effects of NO throughout tadpole development. We identify a discrete switch in nitrergic modulation from net inhibition to overall excitation, coincident with the transition to free-swimming locomotion. Additionally, we show in isolated brain stem-spinal cord preparations of older larvae that NO's excitatory effects are manifested as an increase in the probability of spontaneous swim episode occurrence, as found previously for the neurotransmitter dopamine, but that these effects are mediated within the brain stem. Moreover, while the effects of NO and dopamine are similar, the two modulators act in parallel rather than NO operating serially by modulating dopaminergic signaling. Finally, NO's activation of neurons in the brain stem also leads to the release of NO in the spinal cord that subsequently contributes to NO's facilitation of swimming.


Assuntos
Tronco Encefálico/crescimento & desenvolvimento , Óxido Nítrico/metabolismo , Natação , Animais , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Dopamina/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Inibição Neural , Periodicidade , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Medula Espinal/fisiologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...