Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333188

RESUMO

Background: Mycobacterium tuberculosis (M.tb), the causative bacterium of tuberculosis (TB), establishes residence and grows in human alveolar macrophages (AMs). Inter-individual variation in M.tb-human AM interactions can indicate TB risk and the efficacy of therapies and vaccines; however, we currently lack an understanding of the gene and protein expression programs that dictate this variation in the lungs. Results: Herein, we systematically analyze interactions of a virulent M.tb strain H37Rv with freshly isolated human AMs from 28 healthy adult donors, measuring host RNA expression and secreted candidate proteins associated with TB pathogenesis over 72h. A large set of genes possessing highly variable inter-individual expression levels are differentially expressed in response to M.tb infection. Eigengene modules link M.tb growth rate with host transcriptional and protein profiles at 24 and 72h. Systems analysis of differential RNA and protein expression identifies a robust network with IL1B, STAT1, and IDO1 as hub genes associated with M.tb growth. RNA time profiles document stimulation towards an M1-type macrophage gene expression followed by emergence of an M2-type profile. Finally, we replicate these results in a cohort from a TB-endemic region, finding a substantial portion of significant differentially expressed genes overlapping between studies. Conclusions: We observe large inter-individual differences in bacterial uptake and growth, with tenfold variation in M.tb load by 72h.The fine-scale resolution of this work enables the identification of genes and gene networks associated with early M.tb growth dynamics in defined donor clusters, an important step in developing potential biological indicators of individual susceptibility to M.tb infection and response to therapies.

2.
Mol Cell ; 81(12): 2656-2668.e8, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33930332

RESUMO

A deficient interferon (IFN) response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been implicated as a determinant of severe coronavirus disease 2019 (COVID-19). To identify the molecular effectors that govern IFN control of SARS-CoV-2 infection, we conducted a large-scale gain-of-function analysis that evaluated the impact of human IFN-stimulated genes (ISGs) on viral replication. A limited subset of ISGs were found to control viral infection, including endosomal factors inhibiting viral entry, RNA binding proteins suppressing viral RNA synthesis, and a highly enriched cluster of endoplasmic reticulum (ER)/Golgi-resident ISGs inhibiting viral assembly/egress. These included broad-acting antiviral ISGs and eight ISGs that specifically inhibited SARS-CoV-2 and SARS-CoV-1 replication. Among the broad-acting ISGs was BST2/tetherin, which impeded viral release and is antagonized by SARS-CoV-2 Orf7a protein. Overall, these data illuminate a set of ISGs that underlie innate immune control of SARS-CoV-2/SARS-CoV-1 infection, which will facilitate the understanding of host determinants that impact disease severity and offer potential therapeutic strategies for COVID-19.


Assuntos
Antígenos CD/genética , Interações Hospedeiro-Patógeno/genética , Fatores Reguladores de Interferon/genética , Interferon Tipo I/genética , SARS-CoV-2/genética , Proteínas Virais/genética , Animais , Antígenos CD/química , Antígenos CD/imunologia , Sítios de Ligação , Linhagem Celular Tumoral , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/virologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Regulação da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/imunologia , Complexo de Golgi/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Fatores Reguladores de Interferon/classificação , Fatores Reguladores de Interferon/imunologia , Interferon Tipo I/imunologia , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , SARS-CoV-2/imunologia , Transdução de Sinais , Células Vero , Proteínas Virais/química , Proteínas Virais/imunologia , Internalização do Vírus , Liberação de Vírus/genética , Liberação de Vírus/imunologia , Replicação Viral/genética , Replicação Viral/imunologia
3.
Front Microbiol ; 8: 1695, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28955308

RESUMO

Francisella tularensis (F. tularensis) is the causative agent of tularemia and is classified as a Tier 1 select agent. No licensed vaccine is currently available in the United States and treatment of tularemia is confined to few antibiotics. In this study, we demonstrate that AR-13, a derivative of the cyclooxygenase-2 inhibitor celecoxib, exhibits direct in vitro bactericidal killing activity against Francisella including a type A strain of F. tularensis (SchuS4) and the live vaccine strain (LVS), as well as toward the intracellular proliferation of LVS in macrophages, without causing significant host cell toxicity. Identification of an AR-13-resistant isolate indicates that this compound has an intracellular target(s) and that efflux pumps can mediate AR-13 resistance. In the mouse model of tularemia, AR-13 treatment protected 50% of the mice from lethal LVS infection and prolonged survival time from a lethal dose of F. tularensis SchuS4. Combination of AR-13 with a sub-optimal dose of gentamicin protected 60% of F. tularensis SchuS4-infected mice from death. Taken together, these data support the translational potential of AR-13 as a lead compound for the further development of new anti-Francisella agents.

5.
Artigo em Inglês | MEDLINE | ID: mdl-24783062

RESUMO

BACKGROUND: Human monocyte inflammatory responses differ between virulent and attenuated Francisella infection. RESULTS: A mixed infection model showed that the virulent F. tularensis Schu S4 can attenuate inflammatory cytokine responses to the less virulent F. novicida in human monocytes. CONCLUSION: F. tularensis dampens inflammatory response by an active process. SIGNIFICANCE: This suppression may contribute to enhanced pathogenicity of F. tularensis. Francisella tularensis is a Gram-negative facultative bacterium that can cause the disease tularemia, even upon exposure to low numbers of bacteria. One critical characteristic of Francisella is its ability to dampen or subvert the host immune response. Previous work has shown that monocytes infected with highly virulent F. tularensis subsp. tularensis strain Schu S4 responded with a general pattern of quantitatively reduced pro-inflammatory signaling pathway genes and cytokine production in comparison to those infected with the less virulent related F. novicida. However, it has been unclear whether the virulent Schu S4 was merely evading or actively suppressing monocyte responses. By using mixed infection assays with F. tularensis and F. novicida, we show that F. tularensis actively suppresses monocyte pro-inflammatory responses. Additional experiments show that this suppression occurs in a dose-dependent manner and is dependent upon the viability of F. tularensis. Importantly, F. tularensis was able to suppress pro-inflammatory responses to earlier infections with F. novicida. These results lend support that F. tularensis actively dampens human monocyte responses and this likely contributes to its enhanced pathogenicity.


Assuntos
Citocinas/metabolismo , Francisella tularensis/fisiologia , Monócitos/metabolismo , Monócitos/microbiologia , Células Cultivadas , Francisella tularensis/patogenicidade , Humanos , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Viabilidade Microbiana/imunologia , Monócitos/imunologia , Tularemia/imunologia , Tularemia/metabolismo , Tularemia/microbiologia , Virulência
6.
PLoS Pathog ; 9(1): e1003114, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23359218

RESUMO

Complement receptor 3 (CR3, CD11b/CD18) is a major macrophage phagocytic receptor. The biochemical pathways through which CR3 regulates immunologic responses have not been fully characterized. Francisella tularensis is a remarkably infectious, facultative intracellular pathogen of macrophages that causes tularemia. Early evasion of the host immune response contributes to the virulence of F. tularensis and CR3 is an important receptor for its phagocytosis. Here we confirm that efficient attachment and uptake of the highly virulent Type A F. tularensis spp. tularensis strain Schu S4 by human monocyte-derived macrophages (hMDMs) requires complement C3 opsonization and CR3. However, despite a>40-fold increase in uptake following C3 opsonization, Schu S4 induces limited pro-inflammatory cytokine production compared with non-opsonized Schu S4 and the low virulent F. novicida. This suggests that engagement of CR3 by opsonized Schu S4 contributes specifically to the immune suppression during and shortly following phagocytosis which we demonstrate by CD11b siRNA knockdown in hMDMs. This immune suppression is concomitant with early inhibition of ERK1/2, p38 MAPK and NF-κB activation. Furthermore, TLR2 siRNA knockdown shows that pro-inflammatory cytokine production and MAPK activation in response to non-opsonized Schu S4 depends on TLR2 signaling providing evidence that CR3-TLR2 crosstalk mediates immune suppression for opsonized Schu S4. Deletion of the CD11b cytoplasmic tail reverses the CR3-mediated decrease in ERK and p38 activation during opsonized Schu-S4 infection. The CR3-mediated signaling pathway involved in this immune suppression includes Lyn kinase and Akt activation, and increased MKP-1, which limits TLR2-mediated pro-inflammatory responses. These data indicate that while the highly virulent F. tularensis uses CR3 for efficient uptake, optimal engagement of this receptor down-regulates TLR2-dependent pro-inflammatory responses by inhibiting MAPK activation through outside-in signaling. CR3-linked immune suppression is an important mechanism involved in the pathogenesis of F. tularensis infection.


Assuntos
Francisella tularensis/imunologia , Tolerância Imunológica , Inflamação/imunologia , Antígeno de Macrófago 1/metabolismo , Fagocitose/imunologia , Tularemia/imunologia , Animais , Células CHO/imunologia , Células CHO/metabolismo , Cricetinae , Cricetulus , Inativação Gênica , Humanos , Evasão da Resposta Imune , Fatores Imunológicos/metabolismo , Inflamação/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Proteínas Opsonizantes/metabolismo , RNA Interferente Pequeno/genética , Transfecção , Tularemia/metabolismo
7.
J Interferon Cytokine Res ; 26(8): 548-61, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16881865

RESUMO

Mycobacteria-infected macrophages are poor responders to interferon-gamma (IFN-gamma), resulting in decreased expression of IFN-gamma-induced genes. In the present study, we examined the inhibition of IFN-gamma-induced gene expression by Mycobacterium tuberculosis and four different Mycobacterium avium strains in mouse RAW264.7 macrophages. Gamma-irradiated M. tuberculosis inhibited mRNA expression of a panel of six different IFN- gamma-induced genes. All four of the M. avium strains completely inhibited IFN-gamma-induced expression of MHC class II Aalpha and Ebeta mRNA. However, the Mac101 strain, which is serovar 1, inhibited IFN-gamma induction of IFN regulatory factor-1 (IRF-1) and guanylate-binding protein-1 (GBP-1) mRNA to a greater extent than the other M. avium strains, which are serovar 2. In this study, we also show that mycobacteria inhibit gene expression by both toll-like receptor 2 (TLR2)-dependent and independent pathways. The inhibition of IFN-gamma-induced gene expression by M. avium was reduced but not completely blocked in macrophages from TLR2(/) mice. IFN-gamma-induced gene expression was also inhibited by mycobacteria in RAW264.7 cells expressing dominantnegative TLR2 or myeloid differentiation factor 88 (MyD88), further indicating the existence of a pathway independent of TLR2 and MyD88. These data suggest that mycobacteria inhibit IFN-gamma-induced gene expression by multiple pathways involving both TLR2 and non-TLR receptors.


Assuntos
Interferon gama/antagonistas & inibidores , Macrófagos/microbiologia , Mycobacterium avium/fisiologia , Mycobacterium tuberculosis/fisiologia , Receptor 2 Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide , Fator de Transcrição STAT1/biossíntese , Transdução de Sinais , Receptor 2 Toll-Like/genética
8.
J Immunol ; 174(9): 5687-94, 2005 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15843570

RESUMO

Infection of macrophages with mycobacteria has been shown to inhibit the macrophage response to IFN-gamma. In the current study, we examined the effect of Mycobacteria avium, Mycobacteria tuberculosis, and TLR2 stimulation on IFN-gamma-induced gene expression in human PMA-differentiated THP-1 monocytic cells. Mycobacterial infection inhibited IFN-gamma-induced expression of HLA-DRalpha and HLA-DRbeta mRNA and partially inhibited CIITA expression but did not affect expression of IFN regulatory factor-1 mRNA. To determine whether inhibition of histone deacetylase (HDAC) activity could rescue HLA-DR gene expression, butyric acid and MS-275, inhibitors of HDAC activity, were added at the time of M. avium or M. tuberculosis infection or TLR2 stimulation. HDAC inhibition restored the ability of these cells to express HLA-DRalpha and HLA-DRbeta mRNA in response to IFN-gamma. Histone acetylation induced by IFN-gamma at the HLA-DRalpha promoter was repressed upon mycobacteria infection or TLR2 stimulation. HDAC gene expression was not affected by mycobacterial infection. However, mycobacterial infection or TLR2 stimulation up-regulated expression of mammalian Sin3A, a corepressor that is required for MHC class II repression by HDAC. Furthermore, we show that the mammalian Sin3A corepressor is associated with the HLA-DRalpha promoter in M. avium-infected THP-1 cells stimulated with IFN-gamma. Thus, mycobacterial infection of human THP-1 cells specifically inhibits HLA-DR gene expression by a novel pathway that involves HDAC complex formation at the HLA-DR promoter, resulting in histone deacetylation and gene silencing.


Assuntos
Regulação da Expressão Gênica/imunologia , Antígenos HLA-DR/genética , Histona Desacetilases/biossíntese , Interferon gama/antagonistas & inibidores , Monócitos/imunologia , Mycobacterium avium/imunologia , Mycobacterium tuberculosis/imunologia , Regulação para Cima/imunologia , Acetilação , Proteína de Ligação a CREB , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Inativação Gênica/imunologia , Antígenos HLA-DR/biossíntese , Inibidores de Histona Desacetilases , Histona Desacetilases/genética , Humanos , Fator Regulador 1 de Interferon , Interferon gama/fisiologia , Ativação de Macrófagos/imunologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/fisiologia , Monócitos/metabolismo , Monócitos/microbiologia , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Fosfoproteínas/biossíntese , Fosfoproteínas/genética , Fosforilação , Receptores de Superfície Celular/agonistas , Receptores de Superfície Celular/fisiologia , Proteínas Repressoras/biossíntese , Proteínas Repressoras/genética , Fator de Transcrição STAT1 , Complexo Correpressor Histona Desacetilase e Sin3 , Receptor 2 Toll-Like , Receptores Toll-Like , Transativadores/antagonistas & inibidores , Transativadores/biossíntese , Transativadores/genética , Transativadores/metabolismo , Transativadores/fisiologia , Tirosina/metabolismo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...