Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39001045

RESUMO

Nucleic acid tests are key tools for the detection and diagnosis of many diseases. In many cases, the amplification of the nucleic acids is required to reach a detectable level. To make nucleic acid amplification tests more accessible to a point-of-care (POC) setting, isothermal amplification can be performed with a simple heating source. Although these tests are being performed in bulk reactions, the quantification is not as accurate as it would be with digital amplification. Here, we introduce the use of the vibrating sharp-tip capillary for a simple and portable system for tunable on-demand droplet generation. Because of the large range of droplet sizes possible and the tunability of the vibrating sharp-tip capillary, a high dynamic range (~2 to 6000 copies/µL) digital droplet loop-mediated isothermal amplification (ddLAMP) system has been developed. It was also noted that by changing the type of capillary on the vibrating sharp-tip capillary, the same mechanism can be used for simple and portable DNA fragmentation. With the incorporation of these elements, the present work paves the way for achieving digital nucleic acid tests in a POC setting with limited resources.


Assuntos
Técnicas de Amplificação de Ácido Nucleico , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Vibração , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , Ácidos Nucleicos/análise , DNA/análise , DNA/genética , DNA/química
2.
Anal Chim Acta ; 1279: 341792, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827686

RESUMO

Combining microfluidics with mass spectrometry (MS) analysis has great potential for enabling new analytical applications and simplifying existing MS workflows. The rapid development of 3D printing technology has enabled direct fabrication of microfluidic channels using consumer grade 3D printers, which holds great promise to facilitate the adoption of microfluidic devices by the MS community. However, photo polymerization-based 3D printed devices have an issue with chemical leeching, which can introduce contaminant molecules that may present as isobaric ions and/or severely suppress the ionization of target analytes when combined with MS analysis. Although extra cure and washing steps have alleviated the leeching issue, many such contaminant peaks can still show up in mass spectra. In this work, we report a simple surface modification strategy to isolate the chemical leachates from the channel solution thereby eliminating the contaminant peaks for MS analysis. The channel was prepared by fabricating a layer of polydimethylsiloxane graft followed by wetting the graft using silicone oil. The resulting liquid infused surface (LIS) showed significant reduction in contaminant peaks and improvement in the signal intensity of target analytes. The coating showed good stability after long-term usage (7 days) and long-term storage (∼6 months). Finally, the utility of the coating strategy was demonstrated by printing herringbone microfluidic mixers for studying fast reaction kinetics, which obtained comparable reaction rates to literature values. The effectiveness, simplicity, and stability of the present method will promote the adoption of 3D printed microdevices by the MS community.

3.
Biomed Microdevices ; 25(3): 34, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642743

RESUMO

Accurate, rapid, and multiplexed nucleic acid detection is critical for environmental and biomedical monitoring. In recent years, CRISPR-Cas12a has shown great potential in improving the performance of DNA biosensing. However, the nonspecific trans-cleavage activity of Cas12a complicates the multiplexing capability of Cas12a biosensing. We report a 3D-printed composable microfluidic plate (cPlate) device that utilizes miniaturized wells and microfluidic loading for a multiplexed CRISPR-Cas12a assay. The device easily combines loop-mediated isothermal amplification (LAMP) and CRISPR-Cas12a readout in a simple and high-throughput workflow with low reagent consumption. To ensure the maximum performance of the device, the concentration of Cas12a and detection probe was optimized, which yielded a four-fold sensitivity improvement. Our device demonstrates sensitive detection to the fg mL- 1 level for four waterborne pathogens including shigella, campylobacter, cholera, and legionella within 1 h, making it suitable for low-resource settings.


Assuntos
Sistemas CRISPR-Cas , Dispositivos Lab-On-A-Chip , Sistemas CRISPR-Cas/genética , Microfluídica , Impressão Tridimensional
4.
Biosensors (Basel) ; 12(9)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36140058

RESUMO

Digital biosensing assays demonstrate remarkable advantages over conventional biosensing systems because of their ability to achieve single-molecule detection and absolute quantification. Unlike traditional low-abundance biomarking screening, digital-based biosensing systems reduce sample volumes significantly to the fL-nL level, which vastly reduces overall reagent consumption, improves reaction time and throughput, and enables high sensitivity and single target detection. This review presents the current technology for compartmentalizing reactions and their applications in detecting proteins and nucleic acids. We also analyze existing challenges and future opportunities associated with digital biosensing and research opportunities for developing integrated digital biosensing systems.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Nanotecnologia , Proteínas
5.
Microfluid Nanofluidics ; 26(12)2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38130602

RESUMO

Fragmentation of DNA into short fragments is of great importance for detecting and studying DNAs. Current microfluidic methods of DNA fragmentation are either inefficient for generating small fragments or rely on microbubbles. Here, we report a DNA fragmentation method in a 3D-printed microfluidic device, which allows efficient continuous flow fragmentation of genomic DNAs without the need for microbubbles. This method is enabled by localized acoustic streaming induced by a single vibrating sharp-tip. Genomic DNAs were fragmented into 700 to 3000 bp fragments with a low power consumption of ~140 mW. The system demonstrated successful fragmentation under a wide range of flow rates from 1 to 50 µL/min without the need for air bubbles. Finally, the utility of the continuous DNA fragmentation method was demonstrated to accelerate the DNA hybridization process for biosensing. Due to the small footprint, continuous flow and bubble-free operation, and high fragmentation efficiency, this method demonstrated great potential for coupling with other functional microfluidic units to achieve an integrated DNA analysis platform.

6.
Anal Chem ; 93(3): 1489-1497, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33326204

RESUMO

Enzyme-linked immunosorbent assay (ELISA) is the gold standard method for protein biomarkers. However, scaling up ELISA for multiplexed biomarker analysis is not a trivial task due to the lengthy procedures for fluid manipulation and high reagent/sample consumption. Herein, we present a highly scalable multiplexed ELISA that achieves a similar level of performance to commercial single-target ELISA kits as well as shorter assay time, less consumption, and simpler procedures. This ELISA is enabled by a novel microscale fluid manipulation method, composable microfluidic plates (cPlate), which are comprised of miniaturized 96-well plates and their corresponding channel plates. By assembling and disassembling the plates, all of the fluid manipulations for 96 independent ELISA reactions can be achieved simultaneously without any external fluid manipulation equipment. Simultaneous quantification of four protein biomarkers in serum samples is demonstrated with the cPlate system, achieving high sensitivity and specificity (∼ pg/mL), short assay time (∼1 h), low consumption (∼5 µL/well), high scalability, and ease of use. This platform is further applied to probe the levels of three protein biomarkers related to vascular dysfunction under pulmonary nanoparticle exposure in rat's plasma. Because of the low cost, portability, and instrument-free nature of the cPlate system, it will have great potential for multiplexed point-of-care testing in resource-limited regions.


Assuntos
Proteína C-Reativa/análise , Antígeno Carcinoembrionário/análise , Ensaio de Imunoadsorção Enzimática , Interleucina-6/análise , Técnicas Analíticas Microfluídicas , Antígeno Prostático Específico/análise , Biomarcadores/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA