Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Microbiol ; 73(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38836745

RESUMO

Introduction. The fungal pathogen Aspergillus fumigatus can induce prolonged colonization of the lungs of susceptible patients, resulting in conditions such as allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis.Hypothesis. Analysis of the A. fumigatus secretome released during sub-lethal infection of G. mellonella larvae may give an insight into products released during prolonged human colonisation.Methodology. Galleria mellonella larvae were infected with A. fumigatus, and the metabolism of host carbohydrate and proteins and production of fungal virulence factors were analysed. Label-free qualitative proteomic analysis was performed to identify fungal proteins in larvae at 96 hours post-infection and also to identify changes in the Galleria proteome as a result of infection.Results. Infected larvae demonstrated increasing concentrations of gliotoxin and siderophore and displayed reduced amounts of haemolymph carbohydrate and protein. Fungal proteins (399) were detected by qualitative proteomic analysis in cell-free haemolymph at 96 hours and could be categorized into seven groups, including virulence (n = 25), stress response (n = 34), DNA repair and replication (n = 39), translation (n = 22), metabolism (n = 42), released intracellular (n = 28) and cellular development and cell cycle (n = 53). Analysis of the Gallerial proteome at 96 hours post-infection revealed changes in the abundance of proteins associated with immune function, metabolism, cellular structure, insect development, transcription/translation and detoxification.Conclusion. Characterizing the impact of the fungal secretome on the host may provide an insight into how A. fumigatus damages tissue and suppresses the immune response during long-term pulmonary colonization.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Larva , Mariposas , Animais , Aspergillus fumigatus/metabolismo , Larva/microbiologia , Mariposas/microbiologia , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Secretoma/metabolismo , Proteômica , Fatores de Virulência/metabolismo , Proteoma/análise , Hemolinfa/microbiologia , Hemolinfa/metabolismo , Virulência , Aspergilose/microbiologia , Aspergilose/metabolismo
2.
Sci Rep ; 13(1): 10296, 2023 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-37357251

RESUMO

Robust dynamic cardiac magnetic resonance imaging (MRI) has been a long-standing endeavor-as real-time imaging can provide information on the temporal signatures of disease we currently cannot assess-with the past decade seeing remarkable advances in acceleration using compressed sensing (CS) and artificial intelligence (AI). However, substantial limitations to real-time imaging remain and reconstruction quality is not always guaranteed. To improve reconstruction fidelity in dynamic cardiac MRI, we propose a novel predictive signal model that uses a priori statistics to adaptively predict temporal cardiac dynamics. By using a small training set obtained from the same patient, the new signal model can achieve robust dynamic cardiac MRI in the presence of irregular cardiac rhythm. Evaluation on simulated irregular cardiac dynamics and prospectively undersampled clinical cardiac MRI data demonstrate improved reconstruction quality for two reconstruction frameworks: Kalman filter and CS. The predictive model also works with different undersampling patterns (cartesian, radial, spiral) and can serve as a versatile foundation for robust dynamic cardiac MRI.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Imageamento por Ressonância Magnética/métodos , Coração/diagnóstico por imagem , Imagens de Fantasmas , Processamento de Imagem Assistida por Computador/métodos
3.
Cells ; 12(7)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37048138

RESUMO

Aspergillus fumigatus is an environmental saprophyte and opportunistic fungal pathogen of humans. The aim of the work presented here was to examine the effect of serially subculturing A. fumigatus on agar generated from Galleria mellonella larvae in order to characterize the alterations in the phenotypes that might occur. The passaged strains showed alterations in virulence, antifungal susceptibility, and in protein abundances that may indicate adaptation after 25 passages over 231 days on Galleria extract agar. Passaged strains demonstrated reduced virulence in G. mellonella larvae and increased tolerance to hemocyte-mediated killing, hydrogen peroxide, itraconazole, and amphotericin B. A label-free proteomic analysis of control and passaged A. fumigatus strains revealed a total of 3329 proteins, of which 1902 remained following filtration, and 32 proteins were statistically significant as well as differentially abundant. Proteins involved in the response to oxidative stress were altered in abundance in the passaged strain and included (S)-S-oxide reductase (+2.63-fold), developmental regulator FlbA (+2.27-fold), and histone H2A.Z (-1.82-fold). These results indicate that the prolonged subculturing of A. fumigatus on Galleria extract agar results in alterations in the susceptibility to antifungal agents and in the abundance of proteins associated with the oxidative stress response. The phenomenon may be a result of selection for survival in adverse conditions and highlight how A. fumigatus may adapt to tolerate the pulmonary immune response in cases of human infection.


Assuntos
Aspergillus fumigatus , Mariposas , Animais , Humanos , Antifúngicos/farmacologia , Ágar/farmacologia , Virulência , Proteômica , Larva , Extratos Vegetais/farmacologia
4.
Front Oncol ; 13: 1122229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998434

RESUMO

Background: Interactions among genetic variants are rarely studied but may explain a part of the variability in patient outcomes. Objectives: In this study, we aimed to identify 1 to 3 way interactions among SNPs from five Wnt protein interaction networks that predict the 5-year recurrence risk in a cohort of stage I-III colorectal cancer patients. Methods: 423 patients recruited to the Newfoundland Familial Colorectal Cancer Registry were included. Five Wnt family member proteins (Wnt1, Wnt2, Wnt5a, Wnt5b, and Wnt11) were selected. The BioGRID database was used to identify the proteins interacting with each of these proteins. Genotypes of the SNPs located in the interaction network genes were retrieved from a genome-wide SNP genotype data previously obtained in the patient cohort. The GMDR 0.9 program was utilized to examine 1-, 2-, and 3-SNP interactions using a 5-fold cross validation step. Top GMDR 0.9 models were assessed by permutation testing and, if significant, prognostic associations were verified by multivariable logistic regression models. Results: GMDR 0.9 has identified novel 1, 2, and 3-way SNP interactions associated with 5-year recurrence risk in colorectal cancer. Nine of these interactions were multi loci interactions (2-way or 3-way). Identified interaction models were able to distinguish patients based on their 5-year recurrence-free status in multivariable regression models. The significance of interactions was the highest in the 3-SNP models. Several of the identified SNPs were eQTLs, indicating potential biological roles of the genes they were associated with in colorectal cancer recurrence. Conclusions: We identified novel interacting genetic variants that associate with 5-year recurrence risk in colorectal cancer. A significant portion of the genes identified were previously linked to colorectal cancer pathogenesis or progression. These variants and genes are of interest for future functional and prognostic studies. Our results provide further evidence for the utility of GMDR models in identifying novel prognostic biomarkers and the biological importance of the Wnt pathways in colorectal cancer.

5.
J Fungi (Basel) ; 9(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36836336

RESUMO

Aspergillus fumigatus is an opportunistic fungal pathogen capable of inducing chronic and acute infection in susceptible patients. A. fumigatus interacts with numerous bacteria that compose the microbiota of the lung, including Pseudomonas aeruginosa and Klebsiella pneumoniae, both of which are common isolates from cystic fibrosis sputum. Exposure of A. fumigatus to K. pneumoniae culture filtrate reduced fungal growth and increased gliotoxin production. Qualitative proteomic analysis of the K. pneumoniae culture filtrate identified proteins associated with metal sequestering, enzymatic degradation and redox activity, which may impact fungal growth and development. Quantitative proteomic analysis of A. fumigatus following exposure to K. pneumoniae culture filtrate (25% v/v) for 24 h revealed a reduced abundance of 1,3-beta-glucanosyltransferase (-3.97 fold), methyl sterol monooxygenase erg25B (-2.9 fold) and calcium/calmodulin-dependent protein kinase (-4.2 fold) involved in fungal development, and increased abundance of glutathione S-transferase GliG (+6.17 fold), non-ribosomal peptide synthase GliP (+3.67 fold), O-methyltransferase GliM (+3.5 fold), gamma-glutamyl acyltransferase GliK (+2.89 fold) and thioredoxin reductase GliT (+2.33 fold) involved in gliotoxin production. These results reveal that exposure of A. fumigatus to K. pneumoniae in vivo could exacerbate infection and negatively impact patient prognosis.

6.
Front Genet ; 13: 902217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35991579

RESUMO

Background: SNP interactions may explain the variable outcome risk among colorectal cancer patients. Examining SNP interactions is challenging, especially with large datasets. Multifactor Dimensionality Reduction (MDR)-based programs may address this problem. Objectives: 1) To compare two MDR-based programs for their utility; and 2) to apply these programs to sets of MMP and VEGF-family gene SNPs in order to examine their interactions in relation to colorectal cancer survival outcomes. Methods: This study applied two data reduction methods, Cox-MDR and GMDR 0.9, to study one to three way SNP interactions. Both programs were run using a 5-fold cross validation step and the top models were verified by permutation testing. Prognostic associations of the SNP interactions were verified using multivariable regression methods. Eight datasets, including SNPs from MMP family genes (n = 201) and seven sets of VEGF-family interaction networks (n = 1,517 SNPs) were examined. Results: ∼90 million potential interactions were examined. Analyses in the MMP and VEGF gene family datasets found several novel 1- to 3-way SNP interactions. These interactions were able to distinguish between the patients with different outcome risks (regression p-values 0.03-2.2E-09). The strongest association was detected for a 3-way interaction including CHRM3.rs665159_EPN1.rs6509955_PTGER3.rs1327460 variants. Conclusion: Our work demonstrates the utility of data reduction methods while identifying potential prognostic markers in colorectal cancer.

7.
J Magn Reson Imaging ; 55(2): 373-388, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179830

RESUMO

Acceleration is an important consideration when imaging moving organs such as the heart. Not only does acceleration enable motion-free scans but, more importantly, it lies at the heart of capturing the dynamics of cardiac motion. For over three decades, various ingenious approaches have been devised and implemented for rapid CINE MRI suitable for dynamic cardiac imaging. Virtually all techniques relied on acquiring less data to reduce acquisition times. Parallel imaging was among the first of these innovations, using multiple receiver coils and mathematical algorithms for reconstruction; acceleration factors of 2 to 3 were readily achieved in clinical practice. However, in the context of imaging dynamic events, further decreases in scan time beyond those provided by parallel imaging were possible by exploiting temporal coherencies. This recognition ushered in the era of k-t accelerated MRI, which utilized predominantly statistical methods for image reconstruction from highly undersampled k-space. Despite the successes of k-t acceleration methods, however, the accuracy of reconstruction was not always guaranteed. To address this gap, MR physicists and mathematicians applied compressed sensing theory to ensure reconstruction accuracy. Reconstruction was, indeed, more robust, but it required optimizing regularization parameters and long reconstruction times. To solve the limitations of all previous methods, researchers have turned to artificial intelligence and deep neural networks for the better part of the past decade, with recent results showing rapid, robust reconstruction. This review provides a comprehensive overview of key developments in the history of CINE MRI acceleration, and offers a unique and intuitive explanation behind the techniques and underlying mathematics.Level of Evidence: 5Technical Efficacy Stage: 1.


Assuntos
Inteligência Artificial , Imagem Cinética por Ressonância Magnética , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
8.
Front Fungal Biol ; 3: 893494, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37746216

RESUMO

Galleria mellonella larvae have become a widely accepted and utilised infection model due to the functional homology displayed between their immune response to infection and that observed in the mammalian innate immune response. Due to these similarities, comparable results to murine studies can be obtained using G. mellonella larvae in assessing the virulence of fungal pathogens and the in vivo toxicity or efficacy of anti-fungal agents. This coupled with their low cost, rapid generation of results, and lack of ethical/legal considerations make this model very attractive for analysis of host-pathogen interactions. The larvae of G. mellonella have successfully been utilised to analyse various fungal virulence factors including toxin and enzyme production in vivo providing in depth analysis of the processes involved in the establishment and progression of fungal pathogens (e.g., Candida spps, Aspergillus spp., Madurella mycetomatis, Mucormycetes, and Cryptococcus neoformans). A variety of experimental endpoints can be employed including analysis of fungal burdens, alterations in haemocyte density or sub-populations, melanisation, and characterisation of infection progression using proteomic, histological or imaging techniques. Proteomic analysis can provide insights into both sides of the host-pathogen interaction with each respective proteome being analysed independently following infection and extraction of haemolymph from the larvae. G. mellonella can also be employed for assessing the efficacy and toxicity of antifungal strategies at concentrations comparable to those used in mammals allowing for early stage investigation of novel compounds and combinations of established therapeutic agents. These numerous applications validate the model for examination of fungal infection and development of therapeutic approaches in vivo in compliance with the need to reduce animal models in biological research.

9.
Bull Volcanol ; 79(6): 46, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32025076

RESUMO

The proximity of the major city of Arequipa to El Misti has focused attention on the hazards posed by the active volcano. Since its last major eruption in the fifteenth century, El Misti has experienced a series of modest phreatic eruptions and fluctuating fumarolic activity. Here, we present the first measurements of the compositions of gas emitted from the lava dome in the summit crater. The gas composition is found to be fairly dry with a H2O/SO2 molar ratio of 32 ± 3, a CO2/SO2 molar ratio of 2.7 ± 0.2, a H2S/SO2 molar ratio of 0.23 ± 0.02 and a H2/SO2 molar ratio of 0.012 ± 0.002. This magmatic gas signature with minimal evidence of hydrothermal or wall rock interaction points to a shallow magma source that is efficiently outgassing through a permeable conduit and lava dome. Field and satellite observations show no evolution of the lava dome over the last decade, indicating sustained outgassing through an established fracture network. This stability could be disrupted if dome permeability were to be reduced by annealing or occlusion of outgassing pathways. Continued monitoring of gas composition and flux at El Misti will be essential to determine the evolution of hazard potential at this dangerous volcano.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...