Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Immunol ; 13: 840976, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572573

RESUMO

A better understanding of the impact of early innate immune responses after vaccine priming on vaccine-elicited adaptive immune responses could inform rational design for effective HIV vaccines. The current study compared the whole blood molecular immune signatures of a 3M-052-SE adjuvanted HIV Env protein vaccine to a regimen combining the adjuvanted Env protein with simultaneous administration of a modified Vaccinia Ankara vector expressing HIV Env in infant rhesus macaques at days 0, 1, and 3 post vaccine prime. Both vaccines induced a rapid innate response, evident by elevated inflammatory plasma cytokines and altered gene expression. We identified 25 differentially-expressed genes (DEG) on day 1 compared to day 0 in the HIV protein vaccine group. In contrast, in the group that received both the Env protein and the MVA-Env vaccine only two DEG were identified, implying that the MVA-Env modified the innate response to the adjuvanted protein vaccine. By day 3, only three DEG maintained altered expression, indicative of the transient nature of the innate response. The DEG represented immune pathways associated with complement activation, type I interferon and interleukin signaling, pathogen sensing, and induction of adaptive immunity. DEG expression on day 1 was correlated to Env-specific antibody responses, in particular antibody-dependent cytotoxicity responses at week 34, and Env-specific follicular T helper cells. Results from network analysis supported the interaction of DEG and their proteins in B cell activation. These results emphasize that vaccine-induced HIV-specific antibody responses can be optimized through the modulation of the innate response to the vaccine prime.


Assuntos
Vacinas contra a AIDS , Anticorpos Anti-HIV/sangue , Infecções por HIV , Proteínas do Envelope Viral/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Produtos do Gene env , Anticorpos Anti-HIV/imunologia , Infecções por HIV/prevenção & controle , Humanos , Macaca mulatta , Vacinação , Vaccinia virus/genética
2.
mSphere ; 7(1): e0083921, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196125

RESUMO

Improved access to antiretroviral therapy (ART) and antenatal care has significantly reduced in utero and peripartum mother-to-child human immunodeficiency virus (HIV) transmission. However, as breast milk transmission of HIV still occurs at an unacceptable rate, there remains a need to develop an effective vaccine for the pediatric population. Previously, we compared different HIV vaccine strategies, intervals, and adjuvants in infant rhesus macaques to optimize the induction of HIV envelope (Env)-specific antibodies with Fc-mediated effector function. In this study, we tested the efficacy of an optimized vaccine regimen against oral simian-human immunodeficiency virus (SHIV) acquisition in infant macaques. Twelve animals were immunized with 1086.c gp120 protein adjuvanted with 3M-052 in stable emulsion and modified vaccinia Ankara (MVA) virus expressing 1086.c HIV Env. Twelve control animals were immunized with empty MVA. The vaccine prime was given within 10 days of birth, with booster doses being administered at weeks 6 and 12. The vaccine regimen induced Env-specific plasma IgG antibodies capable of antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). Beginning at week 15, infants were exposed orally to escalating doses of heterologous SHIV-1157(QNE)Y173H once a week until infected. Despite the induction of strong Fc-mediated antibody responses, the vaccine regimen did not reduce the risk of infection or time to acquisition compared to controls. However, among vaccinated animals, ADCC postvaccination and postinfection was associated with reduced peak viremia. Thus, nonneutralizing Env-specific antibodies with Fc effector function elicited by this vaccine regimen were insufficient for protection against heterologous oral SHIV infection shortly after the final immunization but may have contributed to control of viremia. IMPORTANCE Women of childbearing age are three times more likely to contract HIV infection than their male counterparts. Poor HIV testing rates coupled with low adherence to antiretroviral therapy (ART) result in a high risk of mother-to-infant HIV transmission, especially during the breastfeeding period. A preventative vaccine could curb pediatric HIV infections, reduce potential health sequalae, and prevent the need for lifelong ART in this population. The results of the current study imply that the HIV Env-specific IgG antibodies elicited by this candidate vaccine regimen, despite a high magnitude of Fc-mediated effector function but a lack of neutralizing antibodies and polyfunctional T cell responses, were insufficient to protect infant rhesus macaques against oral virus acquisition.


Assuntos
Vacinas contra a AIDS , Infecções por HIV , HIV-1 , Vírus da Imunodeficiência Símia , Animais , Criança , Feminino , Anticorpos Anti-HIV , Humanos , Imunoglobulina G , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Macaca mulatta , Masculino , Gravidez , Vaccinia virus , Viremia
3.
PLoS One ; 16(12): e0256885, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972105

RESUMO

Different HIV vaccine regimens elicit distinct plasma antibody responses in both human and nonhuman primate models. Previous studies in human and non-human primate infants showed that adjuvants influenced the quality of plasma antibody responses induced by pediatric HIV envelope vaccine regimens. We recently reported that use of the 3M052-SE adjuvant and longer intervals between vaccinations are associated with higher magnitude of antibody responses in infant rhesus macaques. However, the impact of different adjuvants in HIV vaccine regimens on the developing infant B cell receptor (BCR) repertoire has not been studied. This study evaluated whether pediatric HIV envelope vaccine regimens with different adjuvants induced distinct antigen-specific memory B cell repertoires and whether specific immunoglobulin (Ig) immunogenetic characteristics are associated with higher magnitude of plasma antibody responses in vaccinated infant rhesus macaques. We utilized archived preclinical pediatric HIV vaccine studies PBMCs and tissue samples from 19 infant rhesus macaques immunized either with (i) HIV Env protein with a squalene adjuvant, (ii) MVA-HIV and Env protein co-administered using a 3-week interval, (iii) MVA-HIV prime/ protein boost with an extended 6-week interval between immunizations, or (iv) with HIV Env administered with 3M-052-SE adjuvant. Frequencies of vaccine-elicited HIV Env-specific memory B cells from PBMCs and tissues were similar across vaccination groups (frequency range of 0.06-1.72%). There was no association between vaccine-elicited antigen-specific memory B cell frequencies and plasma antibody titer or avidity. Moreover, the epitope specificity and Ig immunogenetic features of vaccine-elicited monoclonal antibodies did not differ between the different vaccine regimens. These data suggest that pediatric HIV envelope vaccine candidates with different adjuvants that previously induced higher magnitude and quality of plasma antibody responses in infant rhesus macaques were not driven by distinct antigen-specific memory BCR repertoires.


Assuntos
Vacinas contra a AIDS/sangue , Vacinas contra a AIDS/imunologia , Adjuvantes Imunológicos/farmacologia , Formação de Anticorpos/imunologia , Receptores de Antígenos de Linfócitos B/metabolismo , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Formação de Anticorpos/efeitos dos fármacos , Criança , Regiões Determinantes de Complementaridade , Epitopos/imunologia , Humanos , Imunização , Cadeias Pesadas de Imunoglobulinas/metabolismo , Memória Imunológica/efeitos dos fármacos , Macaca mulatta , Hipermutação Somática de Imunoglobulina , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
4.
Sci Immunol ; 6(60)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131024

RESUMO

The inclusion of infants in the SARS-CoV-2 vaccine roll-out is important to prevent severe complications of pediatric SARS-CoV-2 infections and to limit transmission and could possibly be implemented via the global pediatric vaccine schedule. However, age-dependent differences in immune function require careful evaluation of novel vaccines in the pediatric population. Toward this goal, we assessed the safety and immunogenicity of two SARS-CoV-2 vaccines. Two groups of 8 infant rhesus macaques (RMs) were immunized intramuscularly at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or the purified S protein mixed with 3M-052, a synthetic TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. Both vaccines elicited high magnitude IgG binding to RBD, N terminus domain, S1, and S2, ACE2 blocking activity, and high neutralizing antibody titers, all peaking at week 6. S-specific memory B cells were detected by week 4 and S-specific T cell responses were dominated by the production of IL-17, IFN-γ, or TNF-α. Antibody and cellular responses were stable through week 22. The immune responses for the mRNA-LNP vaccine were of a similar magnitude to those elicited by the Moderna mRNA-1273 vaccine in adults. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines were well-tolerated and highly immunogenic in infant RMs, providing proof-of concept for a pediatric SARS-CoV-2 vaccine with the potential for durable immunity that might decrease the transmission of SARS-CoV-2 and mitigate the ongoing health and socioeconomic impacts of COVID-19.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/prevenção & controle , Macaca mulatta , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/administração & dosagem , Glicoproteína da Espícula de Coronavírus/imunologia
5.
bioRxiv ; 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33851156

RESUMO

Early life SARS-CoV-2 vaccination has the potential to provide lifelong protection and achieve herd immunity. To evaluate SARS-CoV-2 infant vaccination, we immunized two groups of 8 infant rhesus macaques (RMs) at weeks 0 and 4 with stabilized prefusion SARS-CoV-2 S-2P spike (S) protein, either encoded by mRNA encapsulated in lipid nanoparticles (mRNA-LNP) or mixed with 3M-052-SE, a TLR7/8 agonist in a squalene emulsion (Protein+3M-052-SE). Neither vaccine induced adverse effects. High magnitude S-binding IgG and neutralizing infectious dose 50 (ID 50 ) >10 3 were elicited by both vaccines. S-specific T cell responses were dominated by IL-17, IFN- γ , or TNF- α . Antibody and cellular responses were stable through week 22. The S-2P mRNA-LNP and Protein-3M-052-SE vaccines are promising pediatric SARS-CoV-2 vaccine candidates to achieve durable protective immunity. ONE-SENTENCE SUMMARY: SARS-CoV-2 vaccines are well-tolerated and highly immunogenic in infant rhesus macaques.

6.
mSphere ; 5(2)2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32213623

RESUMO

The HIV epidemics in infants and adolescent women are linked. Young women of childbearing age are at high risk for HIV infection and, due to poor HIV testing rates and low adherence to antiretroviral therapy, are at high risk for mother-to-infant transmission. We hypothesize that HIV vaccine regimens initiated in early life would provide the necessary time frame to induce mature and highly functional Env-specific antibody responses that could potentially also protect against HIV acquisition later in life. The present study was designed to test two vaccine regimens, a clade C HIV Env protein vaccine (Env only) alone or combined with a modified vaccinia Ankara (MVA) vector expressing HIV Env (MVA/Env) for the induction and persistence of Env-specific antibody responses in an infant nonhuman primate model. Vaccination was initiated within the first week of life, with booster immunizations at weeks 6, 12, and 32. We demonstrate that both vaccine strategies were able to elicit durable Env-specific antibody responses that were enhanced by a late boost in infancy. Furthermore, we confirmed earlier data that intramuscular administration of the Env protein with the Toll-like receptor 7/8 (TLR7/8)-based adjuvant 3M-052 in stable emulsion (3M-052-SE) induced higher Env-specific antibody responses than vaccination with Env adjuvanted in Span85-Tween 80-squalene (STS) tested in a previous study. These results support the concept of early vaccination as a means to induce durable immune responses that may prevent HIV infection in adolescence at the onset of sexual debut.IMPORTANCE The majority of new HIV-1 infections occur in young adults, with adolescent women being 3 times more likely to acquire HIV than young men. Implementation of HIV prevention strategies has been less successful in this age group; thus, a vaccine given prior to adolescence remains a high priority. We propose that instead of starting HIV vaccination during adolescence, an HIV vaccine regimen initiated in early infancy, aligned with the well-accepted pediatric vaccine schedule and followed with booster immunizations, will provide an alternative means to reduce HIV acquisition in adolescence. Importantly, the long window of time between the first infant vaccine dose and the adolescence vaccine dose will allow for the maturation of highly functional HIV Env-specific antibody responses. Our study provides evidence that early life vaccination induces durable Env-specific plasma IgG responses that can be boosted to further improve the quality of the antibody response.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp120 do Envelope de HIV/imunologia , Imunização Secundária , Imunoglobulina G/imunologia , Vacinas contra a AIDS/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Feminino , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/prevenção & controle , HIV-1 , Esquemas de Imunização , Imunoglobulina G/sangue , Macaca mulatta/imunologia , Masculino , Vacinação
7.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801861

RESUMO

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) via breastfeeding is responsible for nearly half of new infections of children with HIV. Although innate lymphoid cells (ILC) and natural killer (NK) cells are found throughout the oral mucosae, the effects of HIV/simian-human immunodeficiency virus (SHIV) in these tissues are largely unknown. To better understand the mechanics of postnatal transmission, we performed a comprehensive study of simian immunodeficiency virus (SIV)/SHIV-infected infant rhesus macaques (RM) and tracked changes in frequency, trafficking, and function of group 3 ILC (ILC3) and NK cells using polychromatic flow cytometry and cell stimulation assays in colon, tonsil, and oral lymph node samples. Infection led to a 3-fold depletion of ILC3 in the colon and an increase in the levels of NK cells in tonsils and oral lymph nodes. ILC3 and NK cells exhibited alterations in their trafficking repertoires as a result of infection, with increased expression of CD103 in colon NK cells and curtailment of CXCR3, and a significant decrease in α4ß7 expression in colon ILC3. SPICE analyses revealed that ILC3 and NK cells displayed distinct functional profiles by tissue in naive samples. Infection perturbed these profiles, with a nearly total loss of interleukin-22 (IL-22) production in the tonsil and colon; an increase in the levels of CD107a, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) from ILC3; and an increase in the levels of CD107a, macrophage inflammatory protein 1 beta (MIP-1ß), and TNF-α from NK cells. Collectively, these data reveal that lentivirus infection alters the frequencies, receptor repertoires, and functions of innate cells in the oral and gut mucosa of infants. Further study will be required to delineate the full extent of the effect that these changes have on oral and gut homeostasis, SHIV/SIV pathogenesis, and oral opportunistic disease.IMPORTANCE Vertical transmission of HIV from mother to child accounts for many of the new cases seen worldwide. There is currently no vaccine to mitigate this transmission, and there has been limited research on the effects that lentiviral infection has on the innate immune system in oral tissues of infected children. To fill this knowledge gap, our laboratory studied infant rhesus macaques to evaluate how acute SIV/SHIV infections impacted ILC3 and NK cells, which are immune cells critical for mucosal homeostasis and antimicrobial defense. Our data revealed that SIV/SHIV infection led to a depletion of ILC3 and an increase of NK cells and to a functional shift from a homeostatic to a multifunctional proinflammatory state. Taking the results together, we describe how lentiviral infection perturbs the oral and gastrointestinal mucosae of infant macaques through alterations of resident innate immune cells giving rise to chronic inflammation and potentially exacerbating morbidity and mortality in children living with HIV.


Assuntos
Imunidade Inata , Células Matadoras Naturais/imunologia , Macaca mulatta/virologia , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Trato Gastrointestinal , Infecções por HIV/imunologia , HIV-1/imunologia , Transmissão Vertical de Doenças Infecciosas , Interferon gama/imunologia , Interleucinas/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/transmissão , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Carga Viral , Interleucina 22
8.
mBio ; 10(5)2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31488511

RESUMO

To achieve long-term viral remission in human immunodeficiency virus (HIV)-infected children, novel strategies beyond early antiretroviral therapy (ART) will be necessary. Identifying clinical predictors of the time to viral rebound upon ART interruption will streamline the development of novel therapeutic strategies and accelerate their evaluation in clinical trials. However, identification of these biomarkers is logistically challenging in infants, due to sampling limitations and the potential risks of treatment interruption. To facilitate the identification of biomarkers predicting viral rebound, we have developed an infant rhesus macaque (RM) model of oral simian-human immunodeficiency virus (SHIV) SHIV.CH505.375H.dCT challenge and analytical treatment interruption (ATI) after short-term ART. We used this model to characterize SHIV replication kinetics and virus-specific immune responses during short-term ART or after ATI and demonstrated plasma viral rebound in 5 out of 6 (83%) infants. We observed a decline in humoral immune responses and partial dampening of systemic immune activation upon initiation of ART in these infants. Furthermore, we monitored SHIV replication and rebound kinetics in infant and adult RMs and found that both infants and adults demonstrated equally potent virus-specific humoral immune responses. Finally, we validated our models by confirming a well-established correlate of the time to viral rebound, namely, the pre-ART plasma viral load, as well as identified additional potential humoral immune correlates. Thus, this model of infant ART and viral rebound can be used and further optimized to define biomarkers of viral rebound following long-term ART as well as to preclinically assess novel therapies to achieve a pediatric HIV functional cure.IMPORTANCE Novel interventions that do not rely on daily adherence to ART are needed to achieve sustained viral remission for perinatally infected children, who currently rely on lifelong ART. Considering the risks and expense associated with ART interruption trials, the identification of biomarkers of viral rebound will prioritize promising therapeutic intervention strategies, including anti-HIV Env protein therapeutics. However, comprehensive studies to identify those biomarkers are logistically challenging in human infants, demanding the need for relevant nonhuman primate models of HIV rebound. In this study, we developed an infant RM model of oral infection with simian-human immunodeficiency virus expressing clade C HIV Env and short-term ART followed by ATI, longitudinally characterizing the immune responses to viral infection during ART and after ATI. Additionally, we compared this infant RM model to an analogous adult RM rebound model and identified virologic and immunologic correlates of the time to viral rebound after ATI.


Assuntos
Antirretrovirais/imunologia , Antirretrovirais/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Animais , Biomarcadores , Linfócitos T CD4-Positivos , Modelos Animais de Doenças , Humanos , Imunoglobulina G/sangue , Cinética , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/genética , Carga Viral , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
9.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092583

RESUMO

Global elimination of pediatric human immunodeficiency virus (HIV) infections will require the development of novel immune-based approaches, and understanding infant immunity to HIV is critical to guide the rational design of these intervention strategies. Despite their immunological immaturity, chronically HIV-infected children develop broadly neutralizing antibodies (bnAbs) more frequently and earlier than adults do. However, the ontogeny of humoral responses during acute HIV infection is poorly defined in infants and challenging to study in human cohorts due to the presence of maternal antibodies. To further our understanding of age-related differences in the development of HIV-specific immunity during acute infection, we evaluated the generation of virus-specific humoral immune responses in infant (n = 6) and adult (n = 12) rhesus macaques (RMs) infected with a transmitted/founder (T/F) simian-human immunodeficiency virus (SHIV) (SHIV.C.CH505 [CH505]). The plasma HIV envelope-specific IgG antibody kinetics were similar in SHIV-infected infant and adult RMs, with no significant differences in the magnitude or breadth of these responses. Interestingly, autologous tier 2 virus neutralization responses also developed with similar frequencies and kinetics in infant and adult RMs, despite infants exhibiting significantly higher follicular T helper cell (Tfh) and germinal center B cell frequencies than adults. Finally, we show that plasma viral load was the strongest predictor of the development of autologous virus neutralization in both age groups. Our results indicate that the humoral immune response to SHIV infection develops with similar kinetics among infant and adult RMs, suggesting that the early-life immune system is equipped to respond to HIV-1 and promote the production of neutralizing HIV antibodies.IMPORTANCE There is a lack of understanding of how the maturation of the infant immune system influences immunity to HIV infection or how these responses differ from those of adults. Improving our knowledge of infant HIV immunity will help guide antiviral intervention strategies that take advantage of the unique infant immune environment to successfully elicit protective immune responses. We utilized a rhesus macaque model of SHIV infection as a tool to distinguish the differences in HIV humoral immunity in infants versus adults. Here, we demonstrate that the kinetics and quality of the infant humoral immune response to HIV are highly comparable to those of adults during the early phase of infection, despite distinct differences in their Tfh responses, indicating that slightly different mechanisms may drive infant and adult humoral immunity.


Assuntos
Fatores Etários , Formação de Anticorpos , Anticorpos Anti-HIV/sangue , Infecções por HIV/imunologia , HIV/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Anticorpos Neutralizantes/sangue , Linfócitos B/imunologia , Modelos Animais de Doenças , Centro Germinativo/imunologia , Imunoglobulina G/sangue , Macaca mulatta , Plasma/virologia , Linfócitos T/imunologia , Carga Viral
10.
AIDS Res Hum Retroviruses ; 35(3): 310-325, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30303405

RESUMO

The majority of human immunodeficiency virus (HIV) type 1 infections in infants are acquired orally through breastfeeding. Toward development of a pediatric HIV vaccine to prevent breastmilk transmission, we tested the efficacy of a simultaneous oral and intramuscular (IM) vaccination regimen for preventing oral simian immunodeficiency virus (SIV) transmission in infant rhesus macaques. Two groups of neonatal macaques were immunized with DNA encoding SIV virus-like particles (DNA-SIV) on weeks 0 and 3, then boosted with modified vaccinia Ankara (MVA) virus expressing SIV antigens (MVA-SIV) on weeks 6 and 9. One group was prime/boosted by the IM route only. Another group was immunized with DNA by both the IM and topical oral (O) buccal routes, and boosted with MVA-SIV by both the IM and sublingual (SL) routes. A third group of control animals received saline by O + IM routes on weeks 0 and 3, and empty MVA by SL + IM routes on weeks 6 and 9. On week 12, infants were orally challenged once weekly with SIVmac251 until infected. The vaccine regimen that included oral routes resulted in reduced peak viremia. The rate of infection acquisition in vaccinated infants was found to be associated with prechallenge intestinal immunoglobulin G (IgG) responses to SIV gp120 and V1V2. Peak viremia was inversely correlated with postinfection intestinal IgG responses to gp120, gp41, and V1V2. These results suggest that codelivery of a pediatric HIV vaccine by an oral route may be superior to IM-only regimens for generating mucosal antibodies and preventing HIV breastmilk transmission in neonates.


Assuntos
Glicoproteínas de Membrana/imunologia , Boca/virologia , Vacinas contra a SAIDS/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/terapia , Vírus da Imunodeficiência Símia/imunologia , Vacinação/métodos , Vaccinia virus/genética , Proteínas do Envelope Viral/imunologia , Administração Oral , Animais , Animais Recém-Nascidos , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Infecções por HIV/terapia , Imunoglobulina G/metabolismo , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Injeções Intramusculares , Macaca mulatta , Boca/efeitos dos fármacos , Mucosa/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Viremia/tratamento farmacológico
11.
J Virol ; 93(5)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541851

RESUMO

Prevention of mother-to-child transmission (MTCT) is an indispensable component in combatting the global AIDS epidemic. A combination of passive broadly neutralizing antibody (bnAb) infusion and active vaccination promises to provide protection of infants against MTCT from birth through the breastfeeding period and could prime the immune system for lifelong immunity. In this study, we investigate the impact of a single infusion of CD4 binding site (CD4bs) bnAb administered at birth on de novo antibody responses elicited by concurrent active HIV envelope vaccination. Four groups of infant macaques received active immunizations with subunit Env protein or modified vaccinia Ankara (MVA)-vectored Env and subunit Env protein, with or without a single intravenous coadministration of CH31 bnAb at birth. Vaccinated animals were monitored to evaluate binding and functional antibody responses elicited by the active vaccinations. Despite achieving plasma concentrations that were able to neutralize tier 2 viruses, coadministration of CH31 did not have a large impact on the kinetics, magnitude, specificity, or avidity of vaccine-elicited binding or functional antibody responses, including epitope specificity, the development of CD4bs antibodies, neutralization, binding to infected cells, or antibody-dependent cell-mediated cytotoxicity (ADCC). We conclude that infusion of CD4bs bnAb CH31 at birth does not interfere with de novo antibody responses to active vaccination and that a combination of passive bnAb infusion and active HIV-1 Env vaccination is a viable strategy for immediate and prolonged protection against MTCT.IMPORTANCE Our study is the first to evaluate the impact of passive infusion of a broadly neutralizing antibody in newborns on the de novo development of antibody responses following active vaccinations in infancy. We demonstrated the safety and the feasibility of bnAb administration to achieve biologically relevant levels of the antibody and showed that the passive infusion did not impair the de novo antibody production following HIV-1 Env vaccination. Our study paves the way for further investigations of the combination strategy using passive plus active immunization to provide protection of infants born to HIV-1-positive mothers over the entire period of risk for mother-to-child transmission.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/prevenção & controle , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Vacinas contra a AIDS/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Epitopos/imunologia , Anticorpos Anti-HIV/imunologia , HIV-1/imunologia , Macaca mulatta/imunologia , Vacinação/métodos , Vaccinia virus/genética , Vaccinia virus/imunologia
12.
J Med Primatol ; 47(5): 288-297, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30204253

RESUMO

BACKGROUND: A pediatric vaccine to prevent breast milk transmission of human immunodeficiency virus (HIV) may generate greater immune responses at viral entry sites if given by an oral route. METHODS: We compared immune responses induced in juvenile macaques by prime/boosting with simian immunodeficiency virus (SIV)-expressing DNA/modified vaccinia Ankara virus (MVA) by the intramuscular route (IM), the oral (O)/tonsillar routes (T), the O/sublingual (SL) routes, and O+IM/SL routes. RESULTS: O/T or O/SL immunization generated SIV-specific T cells in mucosal tissues but failed to induce SIV-specific IgA in saliva or stool or IgG in plasma. IM/IM or O+IM/SL generated humoral and cellular responses to SIV. IM/IM generated greater frequencies of TFH in spleen, but O+IM/SL animals had higher avidity plasma IgG and more often demonstrated mucosal IgA responses. CONCLUSION: These results suggest that codelivery of HIV DNA/MVA vaccines by the oral and IM routes might be optimal for generating both systemic and mucosal antibodies.


Assuntos
Imunidade Celular/imunologia , Imunidade nas Mucosas/imunologia , Imunogenicidade da Vacina/imunologia , Macaca mulatta , Doenças dos Macacos/imunologia , Vacinas contra a SAIDS/efeitos adversos , Vírus da Imunodeficiência Símia/imunologia , Administração Oral , Administração Sublingual , Animais , DNA Viral/efeitos adversos , Injeções Intramusculares/efeitos adversos , Estudo de Prova de Conceito , Vacínia/imunologia
13.
Front Immunol ; 9: 3119, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30687323

RESUMO

Previous studies showed that single-chain fusion proteins comprised of GM-CSF and major encephalitogenic peptides of myelin, when injected subcutaneously in saline, were potent tolerogenic vaccines that suppressed experimental autoimmune encephalomyelitis (EAE) in rats and mice. These tolerogenic vaccines exhibited dominant suppressive activity in inflammatory environments even when emulsified in Complete Freund's Adjuvant (CFA). The current study provides evidence that the mechanism of tolerance was dependent upon vaccine-induced regulatory CD25+ T cells (Tregs), because treatment of mice with the Treg-depleting anti-CD25 mAb PC61 reversed tolerance. To assess tolerogenic mechanisms, we focused on 2D2-FIG mice, which have a transgenic T cell repertoire that recognizes myelin oligodendrocyte glycoprotein peptide MOG35-55 as a low-affinity ligand and the neurofilament medium peptide NFM13-37 as a high-affinity ligand. Notably, a single subcutaneous vaccination of GMCSF-MOG in saline elicited a major population of FOXP3+ Tregs that appeared within 3 days, was sustained over several weeks, expressed canonical Treg markers, and was present systemically at high frequencies in the blood, spleen, and lymph nodes. Subcutaneous and intravenous injections of GMCSF-MOG were equally effective for induction of FOXP3+ Tregs. Repeated booster vaccinations with GMCSF-MOG elicited FOXP3 expression in over 40% of all circulating T cells. Covalent linkage of GM-CSF with MOG35-55 was required for Treg induction whereas vaccination with GM-CSF and MOG35-55 as separate molecules lacked Treg-inductive activity. GMCSF-MOG elicited high levels of Tregs even when administered in immunogenic adjuvants such as CFA or Alum. Conversely, incorporation of GM-CSF and MOG35-55 as separate molecules in CFA did not support Treg induction. The ability of the vaccine to induce Tregs was dependent upon the efficiency of T cell antigen recognition, because vaccination of 2D2-FIG or OTII-FIG mice with the high-affinity ligands GMCSF-NFM or GMCSF-OVA (Ovalbumin323-339), respectively, did not elicit Tregs. Comparison of 2D2-FIG and 2D2-FIG-Rag1-/- strains revealed that GMCSF-MOG may predominantly drive Treg expansion because the kinetics of vaccine-induced Treg emergence was a function of pre-existing Treg levels. In conclusion, these findings indicate that the antigenic domain of the GMCSF-NAg tolerogenic vaccine is critical in setting the balance between regulatory and conventional T cell responses in both quiescent and inflammatory environments.


Assuntos
Encefalomielite Autoimune Experimental/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Tolerância Imunológica/imunologia , Esclerose Múltipla/terapia , Glicoproteína Mielina-Oligodendrócito/imunologia , Linfócitos T Reguladores/imunologia , Vacinas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos CD4/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Feminino , Fatores de Transcrição Forkhead/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Hibridomas , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Linfocitose/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito/genética , Peptídeos/genética , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T Reguladores/metabolismo , Vacinas/administração & dosagem
14.
Clin Vaccine Immunol ; 24(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28814388

RESUMO

Despite success in reducing vertical HIV transmission by maternal antiretroviral therapy, several obstacles limit its efficacy during breastfeeding, and breast-milk transmission is now the dominant mode of mother-to-child transmission (MTCT) of HIV in infants. Thus, a pediatric vaccine is needed to eradicate oral HIV infections in newborns and infants. Utilizing the infant rhesus macaque model, we compared 3 different vaccine regimens: (i) HIV envelope (Env) protein only, (ii) poxvirus vector (modified vaccinia virus Ankara [MVA])-HIV Env prime and HIV Env boost, and (iii) coadministration of HIV Env and MVA-HIV Env at all time points. The vaccines were administered with an accelerated, 3-week-interval regimen starting at birth for early induction of highly functional HIV Env-specific antibodies. We also tested whether an extended, 6-week immunization interval using the same vaccine regimen as in the coadministration group would enhance the quality of antibody responses. We found that pediatric HIV vaccines administered at birth are effective in inducing HIV Env-specific plasma IgG. The vaccine regimen consisting of only HIV Env protein induced the highest levels of variable region 1 and 2 (V1V2)-specific antibodies and tier 1 neutralizing antibodies, whereas the extended-interval regimen induced both persistent Env-specific systemic IgG and mucosal IgA responses. Antibody-dependent cell-mediated cytotoxicity (ADCC) antibodies in plasma were elicited by all vaccine regimens. These data suggest that infant immunizations beginning at birth are effective for the induction of functional HIV Env-specific antibodies that could potentially protect against breast milk transmission of HIV and set the stage for immunity prior to sexual debut.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Anti-HIV/sangue , Proteína gp120 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Vacinas contra a AIDS/administração & dosagem , Animais , Animais Recém-Nascidos , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Vetores Genéticos , Proteína gp120 do Envelope de HIV/genética , Infecções por HIV/prevenção & controle , Infecções por HIV/transmissão , HIV-1/imunologia , Imunização Secundária , Imunoglobulina A/sangue , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Macaca mulatta , Modelos Animais , Vacinação , Vacinas de DNA/imunologia , Vacinas Sintéticas/imunologia , Vaccinia virus/genética
15.
J Leukoc Biol ; 100(4): 747-760, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27256565

RESUMO

Previous studies established that GM-CSF-deficient (Csf2-deficient) mice exhibit profound resistance to experimental autoimmune encephalomyelitis. This study addressed whether the resistance of Csf2-deficient mice was a result of a requirement for GM-CSF in controlling the functional balance between effector and regulatory T cell subsets during experimental autoimmune encephalomyelitis. The main observation was that treatment with the anti-CD25 mAb PC61 rendered Csf2-deficient mice fully susceptible to severe, chronic experimental autoimmune encephalomyelitis, with disease incidences and severities equivalent to that of C57BL/6 mice. When both donors and recipients were treated with PC61 in a passive model of experimental autoimmune encephalomyelitis, adoptive transfer of myelin-specific Csf2-deficient T cells into Csf2-deficient recipients resulted in a nonresolving chronic course of severe paralytic experimental autoimmune encephalomyelitis. The peripheral Csf2-deficient T cell repertoire was marked by elevated CD3+ T cell frequencies that reflected substantial accumulations of naïve CD44null-low CD4+ and CD8+ T cells but essentially normal frequencies of CD4+ CD25+ forkhead box P3+ T cells among the CD3+ T cell pool. These findings suggested that Csf2-deficient mice had secondary deficiencies in peripheral T cell sensitization to environmental antigens. In accordance, myelin oligodendrocyte glycoprotein 35-55/CFA-sensitized Csf2-deficient mice exhibited deficient peripheral sensitization to myelin oligodendrocyte glycoprotein, whereas pretreatment of Csf2-deficient mice with PC61 enabled the robust induction of myelin oligodendrocyte glycoprotein-specific T cell responses in the draining lymphatics. In conclusion, the experimental autoimmune encephalomyelitis resistance of Csf2-deficient mice, at least in part, reflects a deficient induction of effector T cell function that cannot surmount normal regulatory T cell barriers. Experimental autoimmune encephalomyelitis effector responses, however, are unleashed upon depletion of regulatory CD25+ T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/deficiência , Depleção Linfocítica , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/toxicidade , Suscetibilidade a Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/fisiologia , Granulócitos/imunologia , Imunofenotipagem , Subunidade alfa de Receptor de Interleucina-2/análise , Subunidade alfa de Receptor de Interleucina-2/imunologia , Contagem de Leucócitos , Contagem de Linfócitos , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia
16.
Proc Natl Acad Sci U S A ; 113(7): 1865-70, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26831084

RESUMO

Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate-rich elements (AREs) in the 3'-untranslated regions (3'UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3'UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases.


Assuntos
Inflamação/genética , RNA Mensageiro/genética , Tristetraprolina/genética , Aminoquinolinas/efeitos adversos , Animais , Artrite Experimental/genética , Células Cultivadas , Colágeno/imunologia , Dermatite/etiologia , Dermatite/genética , Encefalomielite Autoimune Experimental/genética , Imiquimode , Camundongos , Camundongos Transgênicos , Mutação , Tristetraprolina/metabolismo
17.
PLoS One ; 9(10): e110048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25303101

RESUMO

Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund's adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund's adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6-7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction.


Assuntos
Encefalomielite Autoimune Experimental/imunologia , Interferon gama/imunologia , Glicoproteína Mielina-Oligodendrócito/imunologia , Animais , Feminino , Imunoglobulina G/imunologia , Macaca fascicularis/imunologia , Masculino , Ratos , Ratos Endogâmicos Lew
18.
J Immunol ; 193(5): 2317-29, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25049359

RESUMO

Single-chain fusion proteins comprised of GM-CSF and neuroantigen (NAg) are potent, NAg-specific inhibitors of experimental autoimmune encephalomyelitis (EAE). An important question was whether GMCSF-NAg tolerogenic vaccines retained inhibitory activity within inflammatory environments or were contingent upon steady-state conditions. GM-CSF fused to the myelin oligodendrocyte glycoprotein MOG35-55 peptide (GMCSF-MOG) reversed established paralytic disease in both passive and active models of EAE in C57BL/6 mice. The fusion protein also reversed EAE in CD4-deficient and B cell-deficient mice. Notably, GMCSF-MOG inhibited EAE when coinjected adjacent to the MOG35-55/CFA emulsion. GMCSF-MOG also retained dominant inhibitory activity when directly emulsified with MOG35-55 in the CFA emulsion in both C57BL/6 or B cell-deficient models of EAE. Likewise, when combined with proteolipid protein 139-151 in CFA, GM-CSF fused to proteolipid protein 139-151 peptide inhibited EAE in SJL mice. When deliberately emulsified in CFA with the NAg, GMCSF-NAg inhibited EAE even though NAg was present at >30-fold molar excess. In vitro studies revealed that the GM-CSF domain of GMCSF-MOG stimulated growth and differentiation of inflammatory dendritic cells (DC) and simultaneously targeted the MOG35-55 domain for enhanced presentation by these DC. These inflammatory DC presented MOG35-55 to MOG-specific T cells by an inhibitory mechanism that was mediated in part by IFN-γ signaling and NO production. In conclusion, GMCSF-NAg was tolerogenic in CFA-primed proinflammatory environments by a mechanism associated with targeted Ag presentation by inflammatory DC and an inhibitory IFN-γ/NO pathway. The inhibitory activity of GMCSF-NAg in CFA-primed lymphatics distinguishes GMCSF-NAg fusion proteins as a unique class of inflammation-dependent tolerogens that are mechanistically distinct from naked peptide or protein-based tolerogens.


Assuntos
Apresentação de Antígeno/efeitos dos fármacos , Autoantígenos/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Tolerância Imunológica/efeitos dos fármacos , Glicoproteína Mielina-Oligodendrócito/farmacologia , Animais , Apresentação de Antígeno/genética , Autoantígenos/genética , Autoantígenos/imunologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/imunologia , Tolerância Imunológica/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interferon gama/genética , Interferon gama/imunologia , Camundongos , Glicoproteína Mielina-Oligodendrócito/genética , Glicoproteína Mielina-Oligodendrócito/imunologia , Óxido Nítrico/genética , Óxido Nítrico/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/imunologia , Fragmentos de Peptídeos/farmacologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/farmacologia
19.
Hum Vaccin Immunother ; 9(5): 1032-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357858

RESUMO

Tolerogenic vaccines represent a new class of vaccine designed to re-establish immunological tolerance, restore immune homeostasis, and thereby reverse autoimmune disease. Tolerogenic vaccines induce long-term, antigen-specific, inhibitory memory that blocks pathogenic T cell responses via loss of effector T cells and gain of regulatory T cell function. Substantial advances have been realized in the generation of tolerogenic vaccines that inhibit experimental autoimmune encephalomyelitis in a preclinical setting, and these vaccines may be a prequel of the tolerogenic vaccines that may have therapeutic benefit in Multiple Sclerosis. The purpose here is to provide a snapshot of the current concepts and future prospects of tolerogenic vaccination for Multiple Sclerosis, along with the central challenges to clinical application.


Assuntos
Tolerância Imunológica , Esclerose Múltipla/terapia , Vacinas/imunologia , Pesquisa Biomédica/tendências , Avaliação Pré-Clínica de Medicamentos , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/terapia , Humanos , Esclerose Múltipla/imunologia
20.
BMC Immunol ; 12: 72, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22208499

RESUMO

BACKGROUND: Vaccination strategies that elicit antigen-specific tolerance are needed as therapies for autoimmune disease. This study focused on whether cytokine-neuroantigen (NAg) fusion proteins could inhibit disease in chronic murine models of experimental autoimmune encephalomyelitis (EAE) and thus serve as potential therapeutic modalities for multiple sclerosis. RESULTS: A fusion protein comprised of murine GM-CSF as the N-terminal domain and the encephalitogenic MOG35-55 peptide as the C-terminal domain was tested as a tolerogenic, therapeutic vaccine (TTV) in the C57BL/6 model of EAE. Administration of GMCSF-MOG before active induction of EAE, or alternatively, at the onset of EAE blocked the development and progression of EAE. Covalent linkage of the GM-CSF and MOG35-55 domains was required for tolerogenic activity. Likewise, a TTV comprised of GM-CSF and PLP139-151 was a tolerogen in the SJL model of EAE. CONCLUSION: These data indicated that fusion proteins containing GM-CSF coupled to myelin auto-antigens elicit tolerance rather than immunity.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Esclerose Múltipla/tratamento farmacológico , Proteínas Recombinantes de Fusão/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Animais , Autoantígenos/administração & dosagem , Autoantígenos/genética , Autoantígenos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Encefalomielite Autoimune Experimental/imunologia , Glicoproteínas/administração & dosagem , Glicoproteínas/genética , Glicoproteínas/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Tolerância Imunológica , Epitopos Imunodominantes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/imunologia , Glicoproteína Mielina-Oligodendrócito , Sistema Nervoso/imunologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Vacinas de Subunidades Antigênicas/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...