Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
BMJ Open ; 14(2): e076194, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367966

RESUMO

INTRODUCTION: Children with chronic medical diseases are at an unacceptable risk of hospitalisation and death from influenza and SARS-CoV-2 infections. Over the past two decades, behavioural scientists have learnt how to design non-coercive 'nudge' interventions to encourage positive health behaviours. Our study aims to evaluate the impact of multicomponent nudge interventions on the uptake of COVID-19 and influenza vaccines in medically at-risk children. METHODS AND ANALYSES: Two separate randomised controlled trials (RCTs), each with 1038 children, will enrol a total of approximately 2076 children with chronic medical conditions who are attending tertiary hospitals in South Australia, Western Australia and Victoria. Participants will be randomly assigned (1:1) to the standard care or intervention group. The nudge intervention in each RCT will consist of three text message reminders with four behavioural nudges including (1) social norm messages, (2) different messengers through links to short educational videos from a paediatrician, medically at-risk child and parent and nurse, (3) a pledge to have their child or themselves vaccinated and (4) information salience through links to the current guidelines and vaccine safety information. The primary outcome is the proportion of medically at-risk children who receive at least one dose of vaccine within 3 months of randomisation. Logistic regression analysis will be performed to determine the effect of the intervention on the probability of vaccination uptake. ETHICS AND DISSEMINATION: The protocol and study documents have been reviewed and approved by the Women's and Children's Health Network Human Research Ethics Committee (HREC/22/WCHN/2022/00082). The results will be published via peer-reviewed journals and presented at scientific meetings and public forums. TRIAL REGISTRATION NUMBER: NCT05613751.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Criança , Feminino , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Influenza Humana/prevenção & controle , Vacinação , Vitória , Ensaios Clínicos Controlados Aleatórios como Assunto
3.
RSC Adv ; 13(32): 22593-22605, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37501772

RESUMO

The microbiological safety of medical equipment and general surfaces is paramount to both the well-being of patients and the public. The application of ozone (a potent oxidant) has been recognised and implemented for this purpose, globally. However, it has primarily been utilised in the gaseous and aqueous forms. In this study, we investigate the potency of fine ozone mists and evaluate the synergistic effect when combined with cationic, anionic and non-ionic surfactants (dodecyl trimethyl ammonium bromide - DTAB, sodium dodecyl sulfate - SDS, alkyl polyglycoside - APG) as well as polyethylene glycol (PEG). Ozone mist is generated via a nebuliser (equipped with a compressed gas stream) and the piezoelectric method; whereas fabric substrates contaminated with Escherichia coli and Staphylococcus aureus are utilised in this study. Contamination levels on the fabric swatches are evaluated using agar dipslides. Compared to gaseous ozonation and aqueous ozonation (via nanobubble generation), the produced ozone mists showed significantly inferior antimicrobial properties for the tested conditions (6 ppm, 5-15 min). However, the hybrid mist-based application of 'ozone + surfactants' and 'ozone + PEG' showed considerable improvements compared to their independent applications (ozone mist only and surfactant mist only). The 'ozone + DTAB' mist had the highest activity, with better results observed with the micron-mist nebuliser than the piezoelectric transducer. We propose a likely mechanism for this synergistic performance (micellar encapsulation) and demonstrate the necessity for continued developments of novel decontamination technologies.

4.
Trials ; 24(1): 454, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438776

RESUMO

BACKGROUND: Influenza and COVID-19 infections during pregnancy may have serious adverse consequences for women as well as their infants. However, uptake of influenza and COVID-19 vaccines during pregnancy remains suboptimal. This study aims to assess the effectiveness of a multi-component nudge intervention to improve influenza and COVID-19 vaccine uptake among pregnant women. METHODS: Pregnant women who receive antenatal care at five tertiary hospitals in South Australia, Western Australia and Victoria will be recruited to two separate randomised controlled trials (RCTs). Women will be eligible for the COVID-19 RCT is they have received two or less doses of a COVID-19 vaccine. Women will be eligible for the influenza RCT if they have not received the 2023 seasonal influenza vaccine. Vaccination status at all stages of the trial will be confirmed by the Australian Immunisation Register (AIR). Participants will be randomised (1:1) to standard care or intervention group (n = 1038 for each RCT). The nudge intervention in each RCT will comprise three SMS text message reminders with links to short educational videos from obstetricians, pregnant women and midwives and vaccine safety information. The primary outcome is at least one dose of a COVID-19 or influenza vaccine during pregnancy, as applicable. Logistic regression will compare the proportion vaccinated between groups. The effect of treatment will be described using odds ratio with a 95% CI. DISCUSSION: Behavioural nudges that facilitate individual choices within a complex context have been successfully used in other disciplines to stir preferred behaviour towards better health choices. If our text-based nudges prove to be successful in improving influenza and COVID-19 vaccine uptake among pregnant women, they can easily be implemented at a national level. TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT05613751. Registered on November 14, 2022.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Envio de Mensagens de Texto , Lactente , Feminino , Gravidez , Humanos , Vacinas contra Influenza/efeitos adversos , Influenza Humana/prevenção & controle , Vacinas contra COVID-19 , Gestantes , COVID-19/prevenção & controle , Vitória , Ensaios Clínicos Controlados Aleatórios como Assunto
5.
Ind Eng Chem Res ; 62(10): 4191-4209, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36943762

RESUMO

The control of infectious diseases can be improved via carefully designed decontamination equipment and systems. Research interest in ozone (a powerful antimicrobial agent) has significantly increased over the past decade. The COVID-19 pandemic has also instigated the development of new ozone-based technologies for the decontamination of personal protective equipment, surfaces, materials, and indoor environments. As this interest continues to grow, it is necessary to consider key factors affecting the applicability of lab-based findings to large-scale systems utilizing ozone. In this review, we present recent developments on the critical factors affecting the successful deployments of industrial ozone technologies. Some of these include the medium of application (air or water), material compatibility, efficient circulation and extraction, measurement and control, automation, scalability, and process economics. We also provide a comparative assessment of ozone relative to other decontamination methods/sterilization technologies and further substantiate the necessity for increased developments in gaseous and aqueous ozonation. Modeling methodologies, which can be applied for the design and implementation of ozone contacting systems, are also presented in this review. Key knowledge gaps and open research problems/opportunities are extensively covered including our recommendations for the development of novel solutions with industrial importance.

6.
Chem Eng J ; 454: 140188, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36373160

RESUMO

Ozone - a powerful antimicrobial agent, has been extensively applied for decontamination purposes in several industries (including food, water treatment, pharmaceuticals, textiles, healthcare, and the medical sectors). The advent of the COVID-19 pandemic has led to recent developments in the deployment of different ozone-based technologies for the decontamination of surfaces, materials and indoor environments. The pandemic has also highlighted the therapeutic potential of ozone for the treatment of COVID-19 patients, with astonishing results observed. The key objective of this review is to summarize recent advances in the utilisation of ozone for decontamination applications in the above-listed industries while emphasising the impact of key parameters affecting microbial reduction efficiency and ozone stability for prolonged action. We realise that aqueous ozonation has received higher research attention, compared to the gaseous application of ozone. This can be attributed to the fact that water treatment represents one of its earliest applications. Furthermore, the application of gaseous ozone for personal protective equipment (PPE) and medical device disinfection has not received a significant number of contributions compared to other applications. This presents a challenge for which the correct application of ozonation can mitigate. In this review, a critical discussion of these challenges is presented, as well as key knowledge gaps and open research problems/opportunities.

7.
ACS Omega ; 7(47): 43006-43021, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36467929

RESUMO

With the advent of the COVID-19 pandemic, there has been a global incentive for applying environmentally sustainable and rapid sterilization methods, such as ultraviolet-C radiation (UVC) and ozonation. Material sterilization is a requirement for a variety of industries, including food, water treatment, clothing, healthcare, medical equipment, and pharmaceuticals. It becomes inevitable when devices and items like protective equipment are to be reused on/by different persons. This study presents novel findings on the performance of these sterilization methods using four microorganisms (Escherichia coli , Staphylococcus aureus , Candida albicans , and Aspergillus fumigatus) and six material substrates (stainless steel, polymethyl methacrylate, copper, surgical facemask, denim, and a cotton-polyester fabric). The combination of both ozone and UVC generally yields improved performance compared to their respective applications for the range of materials and microorganisms considered. Furthermore, the effectiveness of both UVC and ozone was higher when the fungi utilized were smeared onto the nonabsorbent materials than when 10 µL droplets were placed on the material surfaces. This dependence on the contaminating liquid surface area was not exhibited by the bacteria. This study highlights the necessity of adequate UVC and ozone dosage control as well as their synergistic and multifunctional attributes when sterilizing different materials contaminated with a wide range of microorganisms.

8.
Ind Eng Chem Res ; 61(27): 9600-9610, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35855724

RESUMO

For decades, ozone has been known to have antimicrobial properties when dissolved or generated in water and when utilized in its gaseous form on different substrates. This property (the ability to be used in air and water) makes it versatile and applicable to different industries. Although the medium of ozonation depends on the specific process requirements, some industries have the inherent flexibility of medium selection. Thus, it is important to evaluate the antimicrobial efficacy in both media at similar concentrations, an endeavor hardly reported in the literature. This study provides insights into ozone's efficacy in air and water using two Gram-negative bacteria (Escherichia coli NTCC1290 and Pseudomonas aeruginosa NCTC10332), two Gram-positive bacteria (Staphylococcus aureus ATCC25923 and Streptococcus mutans), and two fungi (Candida albicans and Aspergillus fumigatus). For gaseous ozonation, we utilized a custom-made ozone chamber (equipped with ultraviolet lamps), whereas an electrolysis oxygen radical generator was applied for ozone generation in water. During gaseous ozonation, the contaminated substrates (fabric swatches inoculated with bacterial and fungal suspensions) were suspended in the chamber, whereas the swatches were immersed in ozonated water for aqueous ozone treatment. The stability of ozone nanobubbles and their resulting impact on the aqueous disinfection efficiency were studied via dynamic light scattering measurements. It was observed that ozone is more effective in air than in water on all tested organisms except Staphylococcus aureus. The presented findings allow for the adjustment of the treatment conditions (exposure time and concentration) for optimal decontamination, particularly when a certain medium is preferred for ozonation.

9.
J Microbiol Methods ; 194: 106431, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35131364

RESUMO

Ozone treatment is an eco-friendly and cost-effective approach to achieve material disinfection, and this disinfection method is of utmost importance in the present global pandemic. The efficacy of ozone's oxidative potential on common microorganisms has been extensively studied, particularly in the food and water treatment industries. However, little is still understood regarding its antimicrobial capabilities for the treatment of textile substrates in air. In this study, fabric swatches inoculated with bacterial and fungal suspensions are exposed to ozone for different durations and at different ozone concentrations. Pathogenic bacteria (Escherichia coli, Staphylococcus aureus), and fungi (Aspergillus fumigatus, and Candida albicans), are the microbes utilised in this study. The efficacy of ozone is demonstrated by the complete removal of microbiota on the tested swatches when a concentration and exposure duration of 20 ppm and 4 mins are respectively maintained in a test ozone chamber. We expect the insights from this work to guide the development of new ozonation techniques capable of rapid sterilisation in industrial & public settings.


Assuntos
Ozônio , Purificação da Água , Bactérias , Desinfecção/métodos , Escherichia coli , Ozônio/farmacologia
11.
Front Microbiol ; 11: 538476, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262740

RESUMO

Aeolian prokaryotic communities (APC) are important components of bioaerosols that are transported freely or attached to dust particles suspended in the atmosphere. Terrestrial and marine ecosystems are known to release and receive significant prokaryote loads into and from the surrounded atmospheric air. However, compared to terrestrial systems, there is a lack of microbial characterization of atmospheric dust over marine systems, such as the Red Sea, which receives significant terrestrial dust loads and is centrally located within the Global Dust Belt. Prokaryotic communities are likely to be particularly important in the Global Dust Belt, the area between the west coast of North Africa and Central Asia that supports the highest dust fluxes on the planet. Here we characterize the diversity and richness of the APC over the Red Sea ecosystem, the only sea fully contained within the Global Dust Belt. MiSeq sequencing was used to target 16S ribosomal DNA of two hundred and forty aeolian dust samples. These samples were collected at ∼7.5 m high above the sea level at coastal and offshore sampling sites over a 2-year period (2015-2017). The sequencing outcomes revealed that the APC in the atmospheric dust is dominated by Proteobacteria (42.69%), Firmicutes (41.11%), Actinobacteria, (7.69%), and Bacteroidetes (3.49%). The dust-associated prokaryotes were transported from different geographical sources and found to be more diverse than prokaryotic communities of the Red Sea surface water. Marine and soil originated prokaryotes were detected in APC. Hence, depending on the season, these groups may have traveled from other distant sources during storm events in the Red Sea region, where the APC structure is influenced by the origin and the concentration of aeolian dust particles. Accordingly, further studies of the impact of atmospheric organic aerosols on the recipient environments are required.

12.
Sci Total Environ ; 719: 135177, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31864782

RESUMO

Along the past century, the Arabian Gulf has experienced a continuous and fast coastal development leading to increase the human pressures on the marine environment. The present study attempts to describe the historical changes of trace elements in the sediments of vegetated coastal habitats in the western Arabian Gulf. 210Pb-dated sediment cores collected from seagrass, mangrove and saltmarsh habitats were analyzed to evaluate historical variations in concentrations and burial rates of 20 trace elements (Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, S, Sr, V and Zn). The highest correlations (Spearman correlation coefficients ≥0.51) were found between crustal elements (Al, Fe, Co, Cr, K, Na, Mg, Mn, Ni, V, and P), suggesting a common crustal source in the Gulf. The increased concentrations of these crustal elements in modern marine sediments of the Arabian Gulf seem to be linked to increased mineral dust deposition in the area. Over the last century, both elemental concentrations and burial rates increased by factors of 1-9 and 1-15, respectively, with a remarkably fast increase occurring in the past six decades (~1960 - early 2000). This is most likely due to an increase in anthropogenic pressures along the Gulf coast. Our study demonstrates that sediments in vegetated coastal habitats provide long-term archives of trace elements concentrations and burial rates reflecting human activities in the Arabian Gulf.

13.
NPJ Digit Med ; 2: 123, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31840094

RESUMO

Technological advances in passive digital phenotyping present the opportunity to quantify neurological diseases using new approaches that may complement clinical assessments. Here, we studied multiple sclerosis (MS) as a model neurological disease for investigating physiometric and environmental signals. The objective of this study was to assess the feasibility and correlation of wearable biosensors with traditional clinical measures of disability both in clinic and in free-living in MS patients. This is a single site observational cohort study conducted at an academic neurological center specializing in MS. A cohort of 25 MS patients with varying disability scores were recruited. Patients were monitored in clinic while wearing biosensors at nine body locations at three separate visits. Biosensor-derived features including aspects of gait (stance time, turn angle, mean turn velocity) and balance were collected, along with standardized disability scores assessed by a neurologist. Participants also wore up to three sensors on the wrist, ankle, and sternum for 8 weeks as they went about their daily lives. The primary outcomes were feasibility, adherence, as well as correlation of biosensor-derived metrics with traditional neurologist-assessed clinical measures of disability. We used machine-learning algorithms to extract multiple features of motion and dexterity and correlated these measures with more traditional measures of neurological disability, including the expanded disability status scale (EDSS) and the MS functional composite-4 (MSFC-4). In free-living, sleep measures were additionally collected. Twenty-three subjects completed the first two of three in-clinic study visits and the 8-week free-living biosensor period. Several biosensor-derived features significantly correlated with EDSS and MSFC-4 scores derived at visit two, including mobility stance time with MSFC-4 z-score (Spearman correlation -0.546; p = 0.0070), several aspects of turning including turn angle (0.437; p = 0.0372), and maximum angular velocity (0.653; p = 0.0007). Similar correlations were observed at subsequent clinic visits, and in the free-living setting. We also found other passively collected signals, including measures of sleep, that correlated with disease severity. These findings demonstrate the feasibility of applying passive biosensor measurement techniques to monitor disability in MS patients both in clinic and in the free-living setting.

14.
Sci Rep ; 9(1): 13741, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551441

RESUMO

Atmospheric transport is a major vector for the long-range transport of microbial communities, maintaining connectivity among them and delivering functionally important microbes, such as pathogens. Though the taxonomic diversity of aeolian microorganisms is well characterized, the genomic functional traits underpinning their survival during atmospheric transport are poorly characterized. Here we use functional metagenomics of dust samples collected on the Global Dust Belt to initiate a Gene Catalogue of Aeolian Microbiome (GCAM) and explore microbial genetic traits enabling a successful aeolian lifestyle in Aeolian microbial communities. The GCAM reported here, derived from ten aeolian microbial metagenomes, includes a total of 2,370,956 non-redundant coding DNA sequences, corresponding to a yield of ~31 × 106 predicted genes per Tera base-pair of DNA sequenced for the aeolian samples sequenced. Two-thirds of the cataloged genes were assigned to bacteria, followed by eukaryotes (5.4%), archaea (1.1%), and viruses (0.69%). Genes encoding proteins involved in repairing UV-induced DNA damage and aerosolization of cells were ubiquitous across samples, and appear as fundamental requirements for the aeolian lifestyle, while genes coding for other important functions supporting the aeolian lifestyle (chemotaxis, aerotaxis, germination, thermal resistance, sporulation, and biofilm formation) varied among the communities sampled.


Assuntos
Metagenoma/genética , Microbiota/genética , Archaea/genética , Bactérias/genética , Biodiversidade , Dano ao DNA/genética , Poeira , Eucariotos/genética , Oceano Índico , Metagenômica/métodos , Vírus/genética
15.
Front Microbiol ; 10: 1112, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214129

RESUMO

Aeolian dust exerts a considerable influence on atmospheric and oceanic conditions negatively impacting human health, particularly in arid and semi-arid regions like Saudi Arabia. Aeolian dust is often characterized by its mineral and chemical composition; however, there is a microbiological component of natural aerosols that has received comparatively little attention. Moreover, the amount of materials suspended in the atmosphere is highly variable from day to day. Thus, understanding the variability of atmospheric dust loads and suspended microbes throughout the year is essential to clarify the possible effects of dust on the Red Sea ecosystem. Here, we present the first estimates of dust and microbial loads at a coastal site on the Red Sea over a 2-year period, supplemented with measurements from dust samples collected along the Red Sea basin in offshore waters. Weekly average dust loads from a coastal site on the Red Sea ranged from 4.6 to 646.11 µg m-3, while the abundance of airborne prokaryotic cells and viral-like particles (VLPs) ranged from 77,967 to 1,203,792 cells m-3 and from 69,615 to 3,104,758 particles m-3, respectively. To the best of our knowledge, these are the first estimates of airborne microbial abundance in this region. The elevated concentrations of resuspended dust particles and suspended microbes found in the air indicate that airborne microbes may potentially have a large impact on human health and on the Red Sea ecosystem.

16.
Sci Total Environ ; 669: 205-212, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30878929

RESUMO

Massive consumption of petroleum since the past century has led to considerable emissions into marine ecosystems. Marine sediments may accumulate substantial quantities of petroleum and associated contaminants in oil-producing areas. Here, we report accelerated accumulation of total petroleum hydrocarbons (TPH) in 'blue carbon' vegetated ecosystems of the Arabian Gulf - the world's most important region for oil production. In addition to increased accumulation with the onset of oil exploitation, sediment records reflect a large depositional event associated with the 1991 Gulf War, with the magnitude of these maxima varying across habitats, depending on their elevation along the shoreline. Blue carbon ecosystems of the Arabian Gulf currently bury about 2300 megagrams (Mg) of TPHs annually and have accumulated TPH stocks of 59,799 Mg over the past 25 years alone. Massive burial and sequestration of TPH by blue carbon ecosystems is an important, but thus far unrecognized, removal mechanism in the Arabian Gulf. Conserving these ecosystems is important to avoid possible remobilization of sequestered TPH into the surrounding environment.

17.
Environ Sci Technol ; 51(11): 5907-5912, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28447452

RESUMO

To the best of our knowledge, this study represents the first observation of multiday persistence of an indoor aerosol transformation linked to a kitchen degreaser containing monoethanol amine (MEA). MEA remaining on the cleaned surfaces and on a wiping paper towel in a trash can was able to transform ammonium sulfate and ammonium nitrate into (MEA)2SO4 and (MEA)NO3. This influence persisted for at least 60 h despite a high average ventilation rate. The influence was observed using both offline (filters, impactors, and ion chromatography analysis) and online (compact time-of-flight aerosol mass spectrometer) techniques. Substitution of ammonia in ammonium salts was observed not only in aerosol but also in particles deposited on a filter before the release of MEA. The similar influence of other amines is expected based on literature data. This influence represents a new pathway for MEA exposure of people in an indoor environment. The stabilizing effect on indoor nitrate also causes higher indoor exposure to fine nitrates.


Assuntos
Aerossóis , Aminas , Sulfato de Amônio , Poluentes Atmosféricos , Amônia , Monitoramento Ambiental , Nitratos , Tamanho da Partícula
18.
Sci Total Environ ; 518-519: 424-33, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25770955

RESUMO

Winter and summer measurements of organic carbon and elemental carbon (OC and EC) in PM2.5 were performed in parallel at two sites, the rural background station Kosetice and the Prague-Suchdol urban background site, with a 2-h time resolution using semi-online field OC/EC analysers. Seasonal and site differences were found in the OC and EC contents of PM2.5. Overall, the highest concentrations of both OC and EC were during winter at the urban site. The average urban impact was 50% for OC and 70% for EC. The summer season gives similar concentrations of OC at both sites. However, higher concentrations of EC, caused by higher traffic, were found at the urban site with an average urban increase of 50%. Moreover, an analysis of four OC fractions depending on the volatility (OC1 - most volatile, OC4 - least volatile) and pyrolytic carbon (PC) is provided. A similar level of each OC fraction at both sites was found in summer, except for higher OC1 at urban and higher PC at the rural site. In winter, the differences between the urban and rural sites were dominated by a large increase of the OC1 fraction in comparison with the rural site. A diurnal pattern of concentration and share of OC1 and PC suggests a prevailing influence of local sources on their concentrations at the urban site in winter. The OC3 and OC4 diurnal cycles suggest their more regional or long range transport origin in both seasons. The prevalent influence of OC1 at any urban site has not been previously reported. The minimisation of semi-volatile carbon losses during semi-continuous sampling and analysis, in comparison with off-line sampling methods, is a probable reason for the observed differences.

19.
Mol Cell Proteomics ; 14(9): 2357-74, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25693799

RESUMO

There is an increasing need in biology and clinical medicine to robustly and reliably measure tens to hundreds of peptides and proteins in clinical and biological samples with high sensitivity, specificity, reproducibility, and repeatability. Previously, we demonstrated that LC-MRM-MS with isotope dilution has suitable performance for quantitative measurements of small numbers of relatively abundant proteins in human plasma and that the resulting assays can be transferred across laboratories while maintaining high reproducibility and quantitative precision. Here, we significantly extend that earlier work, demonstrating that 11 laboratories using 14 LC-MS systems can develop, determine analytical figures of merit, and apply highly multiplexed MRM-MS assays targeting 125 peptides derived from 27 cancer-relevant proteins and seven control proteins to precisely and reproducibly measure the analytes in human plasma. To ensure consistent generation of high quality data, we incorporated a system suitability protocol (SSP) into our experimental design. The SSP enabled real-time monitoring of LC-MRM-MS performance during assay development and implementation, facilitating early detection and correction of chromatographic and instrumental problems. Low to subnanogram/ml sensitivity for proteins in plasma was achieved by one-step immunoaffinity depletion of 14 abundant plasma proteins prior to analysis. Median intra- and interlaboratory reproducibility was <20%, sufficient for most biological studies and candidate protein biomarker verification. Digestion recovery of peptides was assessed and quantitative accuracy improved using heavy-isotope-labeled versions of the proteins as internal standards. Using the highly multiplexed assay, participating laboratories were able to precisely and reproducibly determine the levels of a series of analytes in blinded samples used to simulate an interlaboratory clinical study of patient samples. Our study further establishes that LC-MRM-MS using stable isotope dilution, with appropriate attention to analytical validation and appropriate quality control measures, enables sensitive, specific, reproducible, and quantitative measurements of proteins and peptides in complex biological matrices such as plasma.


Assuntos
Proteínas de Neoplasias/sangue , Neoplasias/metabolismo , Peptídeos/análise , Proteômica/métodos , Cromatografia Líquida/métodos , Humanos , Marcação por Isótopo , Espectrometria de Massas/métodos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/sangue , Peptídeos/química , Reprodutibilidade dos Testes
20.
Chemosphere ; 119: 769-777, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25194477

RESUMO

A detailed spatial and temporal assessment of urban NH3 levels and potential emission sources was made with passive samplers in six major Spanish cities (Barcelona, Madrid, A Coruña, Huelva, Santa Cruz de Tenerife and Valencia). Measurements were conducted during two different periods (winter-autumn and spring-summer) in each city. Barcelona showed the clearest spatial pattern, with the highest concentrations in the old city centre, an area characterised by a high population density and a dense urban architecture. The variability in NH3 concentrations did not follow a common seasonal pattern across the different cities. The relationship of urban NH3 with SO2 and NOX allowed concluding on the causes responsible for the variations in NH3 levels between measurement periods observed in Barcelona, Huelva and Madrid. However, the factors governing the variations in A Coruña, Valencia and Santa Cruz de Tenerife are still not fully understood. This study identified a broad variability in NH3 concentrations at the city-scale, and it confirms that NH3 sources in Spanish urban environments are vehicular traffic, biological sources (e.g. garbage containers), wastewater treatment plants, solid waste treatment plants and industry. The importance of NH3 monitoring in urban environments relies on its role as a precursor of secondary inorganic species and therefore PMX. Further research should be addressed in order to establish criteria to develop and implement mitigation strategies for cities, and to include urban NH3 sources in the emission inventories.


Assuntos
Poluentes Atmosféricos/análise , Amônia/análise , Cidades , Monitoramento Ambiental , Estações do Ano , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...