Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Cancer Res Commun ; 4(4): 970-985, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517140

RESUMO

Immunotherapies for cancers of epithelial origin have limited efficacy, and a growing body of evidence links the composition of extracellular matrix (ECM) with the likelihood of a favorable response to treatment. The ECM may be considered an immunologic barrier, restricting the localization of cytotoxic immune cells to stromal areas and inhibiting their contact with tumor cells. Identifying ECM components of this immunologic barrier could provide targets that whether degraded in situ may support antitumor immunity and improve immunotherapy response. Using a library of primary triple-negative breast cancer tissues, we correlated CD8+ T-cell tumor contact with ECM composition and identified a proteoglycan, versican (VCAN), as a putative member of the immunologic barrier. Our analysis reveals that CD8+ T-cell contact with tumor associates with the location of VCAN expression, the specific glycovariant of VCAN [defined through the pattern of posttranslational attachments of glycosaminoglycans (GAG)], and the cell types that produce the variant. In functional studies, the isomers of chondroitin sulfate presented on VCAN have opposing roles being either supportive or inhibiting of T-cell trafficking, and removal of the GAGs ameliorates these effects on T-cell trafficking. Overall, we conclude that VCAN can either support or inhibit T-cell trafficking within the tumor microenvironment depending on the pattern of GAGs present, and that VCAN is a major component of the ECM immunologic barrier that defines the type of response to immunotherapy. SIGNIFICANCE: The response to immunotherapy has been poor toward solid tumors despite immune cells infiltrating into the tumor. The ECM has been associated with impacting T-cell infiltration toward the tumor and in this article we have identified VCAN and its structural modification, chondroitin sulfate as having a key role in T-cell invasion.


Assuntos
Neoplasias , Versicanas , Humanos , Linfócitos T CD8-Positivos/metabolismo , Sulfatos de Condroitina , Fenótipo , Microambiente Tumoral , Versicanas/química , Animais
2.
Bioinform Adv ; 4(1): vbad190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38282976

RESUMO

Motivation: Anti-cancer drug response prediction is a central problem within stratified medicine. Transcriptomic profiles of cancer cell lines are typically used for drug response prediction, but we hypothesize that proteomics or phosphoproteomics might be more suitable as they give a more direct insight into cellular processes. However, there has not yet been a systematic comparison between all three of these datatypes using consistent evaluation criteria. Results: Due to the limited number of cell lines with phosphoproteomics profiles we use learning curves, a plot of predictive performance as a function of dataset size, to compare the current performance and predict the future performance of the three omics datasets with more data. We use neural networks and XGBoost and compare them against a simple rule-based benchmark. We show that phosphoproteomics slightly outperforms RNA-seq and proteomics using the 38 cell lines with profiles of all three omics data types. Furthermore, using the 877 cell lines with proteomics and RNA-seq profiles, we show that RNA-seq slightly outperforms proteomics. With the learning curves we predict that the mean squared error using the phosphoproteomics dataset would decrease by ∼15% if a dataset of the same size as the proteomics/transcriptomics was collected. For the cell lines with proteomics and RNA-seq profiles the learning curves reveal that for smaller dataset sizes neural networks outperform XGBoost and vice versa for larger datasets. Furthermore, the trajectory of the XGBoost curve suggests that it will improve faster than the neural networks as more data are collected. Availability and implementation: See https://github.com/Nik-BB/Learning-curves-for-DRP for the code used.

3.
Arterioscler Thromb Vasc Biol ; 43(10): 1900-1920, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589142

RESUMO

BACKGROUND: Thoracic aortic dissection (TAD) is a life-threatening aortic disease without effective medical treatment. Increasing evidence has suggested a role for NE (neutrophil elastase) in vascular diseases. In this study, we aimed at investigating a causal role for NE in TAD and exploring the molecular mechanisms involved. METHODS: ß-aminopropionitrile monofumarate was administrated in mice to induce TAD. NE deficiency mice, pharmacological inhibitor GW311616A, and adeno-associated virus-2-mediated in vivo gene transfer were applied to explore a causal role for NE and associated target gene in TAD formation. Multiple functional assays and biochemical analyses were conducted to unravel the underlying cellular and molecular mechanisms of NE in TAD. RESULTS: NE aortic gene expression and plasma activity was significantly increased during ß-aminopropionitrile monofumarate-induced TAD and in patients with acute TAD. NE deficiency prevents ß-aminopropionitrile monofumarate-induced TAD onset/development, and GW311616A administration ameliorated TAD formation/progression. Decreased levels of neutrophil extracellular traps, inflammatory cells, and MMP (matrix metalloproteinase)-2/9 were observed in NE-deficient mice. TBL1x (F-box-like/WD repeat-containing protein TBL1x) has been identified as a novel substrate and functional downstream target of NE in TAD. Loss-of-function studies revealed that NE mediated inflammatory cell transendothelial migration by modulating TBL1x-LTA4H (leukotriene A4 hydrolase) signaling and that NE regulated smooth muscle cell phenotype modulation under TAD pathological condition by regulating TBL1x-MECP2 (methyl CpG-binding protein 2) signal axis. Further mechanistic studies showed that TBL1x inhibition decreased the binding of TBL1x and HDAC3 (histone deacetylase 3) to MECP2 and LTA4H gene promoters, respectively. Finally, adeno-associated virus-2-mediated Tbl1x gene knockdown in aortic smooth muscle cells confirmed a regulatory role for TBL1x in NE-mediated TAD formation. CONCLUSIONS: We unravel a critical role of NE and its target TBL1x in regulating inflammatory cell migration and smooth muscle cell phenotype modulation in the context of TAD. Our findings suggest that the NE-TBL1x signal axis represents a valuable therapeutic for treating high-risk TAD patients.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção da Aorta Torácica , Animais , Humanos , Camundongos , Aminopropionitrilo/toxicidade , Aneurisma da Aorta Torácica/induzido quimicamente , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/genética , Elastase de Leucócito/genética , Elastase de Leucócito/efeitos adversos
4.
Cancers (Basel) ; 15(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37370765

RESUMO

BACKGROUND: Tumour heterogeneity in high-grade serous ovarian cancer (HGSOC) is a proposed cause of acquired resistance to treatment and high rates of relapse. Among the four distinct molecular subtypes of HGSOC, the mesenchymal subtype (MES) has been observed with high frequency in several study cohorts. Moreover, it exhibits aggressive characteristics with poor prognosis. The failure to adequately exploit such subtypes for treatment results in high mortality rates, highlighting the need for effective targeted therapeutic strategies that follow the idea of personalized medicine (PM). METHODS: As a proof-of-concept, bulk and single-cell RNA data were used to characterize the distinct composition of the tumour microenvironment (TME), as well as the cell-cell communication and its effects on downstream transcription of MES. Moreover, transcription factor activity contextualized with causal inference analysis identified novel therapeutic targets with potential causal impact on transcription factor dysregulation promoting the malignant phenotype. FINDINGS: Fibroblast and macrophage phenotypes are of utmost importance for the complex intercellular crosstalk of MES. Specifically, tumour-associated macrophages were identified as the source of interleukin 1 beta (IL1B), a signalling molecule with significant impact on downstream transcription in tumour cells. Likewise, signalling molecules tumour necrosis factor (TNF), transforming growth factor beta (TGFB1), and C-X-C motif chemokine 12 (CXCL12) were prominent drivers of downstream gene expression associated with multiple cancer hallmarks. Furthermore, several consistently hyperactivated transcription factors were identified as potential sources for treatment opportunities. Finally, causal inference analysis identified Yes-associated protein 1 (YAP1) and Nuclear Receptor Subfamily 2 Group F Member 6 (NR2F6) as novel therapeutic targets in MES, verified in an independent dataset. INTERPRETATION: By utilizing a sophisticated bioinformatics approach, several candidates for treatment opportunities, including YAP1 and NR2F6 were identified. These candidates represent signalling regulators within the cellular network of the MES. Hence, further studies to confirm these candidates as potential targeted therapies in PM are warranted.

5.
PLoS Comput Biol ; 19(6): e1010459, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37352361

RESUMO

Phosphoproteomics allows one to measure the activity of kinases that drive the fluxes of signal transduction pathways involved in biological processes such as immune function, senescence and cell growth. However, deriving knowledge of signalling network circuitry from these data is challenging due to a scarcity of phosphorylation sites that define kinase-kinase relationships. To address this issue, we previously identified around 6,000 phosphorylation sites as markers of kinase-kinase relationships (that may be conceptualised as network edges), from which empirical cell-model-specific weighted kinase networks may be reconstructed. Here, we assess whether the application of community detection algorithms to such networks can identify new components linked to canonical signalling pathways. Phosphoproteomics data from acute myeloid leukaemia (AML) cells treated separately with PI3K, AKT, MEK and ERK inhibitors were used to reconstruct individual kinase networks. We used modularity maximisation to detect communities in each network, and selected the community containing the main target of the inhibitor used to treat cells. These analyses returned communities that contained known canonical signalling components. Interestingly, in addition to canonical PI3K/AKT/mTOR members, the community assignments returned TTK (also known as MPS1) as a likely component of PI3K/AKT/mTOR signalling. We drew similar insights from an external phosphoproteomics dataset from breast cancer cells treated with rapamycin and oestrogen. We confirmed this observation with wet-lab laboratory experiments showing that TTK phosphorylation was decreased in AML cells treated with AKT and MTOR inhibitors. This study illustrates the application of community detection algorithms to the analysis of empirical kinase networks to uncover new members linked to canonical signalling pathways.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fosfotransferases/metabolismo
6.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047202

RESUMO

The downregulation of Pleckstrin Homology-Like Domain family A member 1 (PHLDA1) expression mediates resistance to targeted therapies in receptor tyrosine kinase-driven cancers. The restoration and maintenance of PHLDA1 levels in cancer cells thus constitutes a potential strategy to circumvent resistance to inhibitors of receptor tyrosine kinases. Through a pharmacological approach, we identify the inhibition of MAPK signalling as a crucial step in PHLDA1 downregulation. Further ChIP-qPCR analysis revealed that MEK1/2 inhibition produces significant epigenetic changes at the PHLDA1 locus, specifically a decrease in the activatory marks H3Kme3 and H3K27ac. In line with this, we show that treatment with the clinically relevant class I histone deacetylase (HDAC) inhibitor 4SC-202 restores PHLDA1 expression in lapatinib-resistant human epidermal growth factor receptor-2 (HER2)+ breast cancer cells. Critically, we show that when given in combination, 4SC-202 and lapatinib exert synergistic effects on 2D cell proliferation and colony formation capacity. We therefore propose that co-treatment with 4SC-202 may prolong the clinical efficacy of lapatinib in HER2+ breast cancer patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Histona Desacetilases , Quinazolinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/metabolismo
7.
Hemasphere ; 7(3): e853, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36874381

RESUMO

Long-term hematopoietic stem cells are rare, highly quiescent stem cells of the hematopoietic system with life-long self-renewal potential and the ability to transplant and reconstitute the entire hematopoietic system of conditioned recipients. Most of our understanding of these rare cells has relied on cell surface identification, epigenetic, and transcriptomic analyses. Our knowledge of protein synthesis, folding, modification, and degradation-broadly termed protein homeostasis or "proteostasis"-in these cells is still in its infancy, with very little known about how the functional state of the proteome is maintained in hematopoietic stem cells. We investigated the requirement of the small phospho-binding adaptor proteins, the cyclin-dependent kinase subunits (CKS1 and CKS2), for maintaining ordered hematopoiesis and long-term hematopoietic stem cell reconstitution. CKS1 and CKS2 are best known for their roles in p27 degradation and cell cycle regulation, and by studying the transcriptome and proteome of Cks1 -/- and Cks2 -/- mice, we demonstrate regulation of key signaling pathways that govern hematopoietic stem cell biology including AKT, FOXO1, and NFκB, together balancing protein homeostasis and restraining reactive oxygen species to ensure healthy hematopoietic stem cell function.

8.
Biochem J ; 480(6): 403-420, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-36961757

RESUMO

Phosphorylation constitutes the most common and best-studied regulatory post-translational modification in biological systems and archetypal signalling pathways driven by protein and lipid kinases are disrupted in essentially all cancer types. Thus, the study of the phosphoproteome stands to provide unique biological information on signalling pathway activity and on kinase network circuitry that is not captured by genetic or transcriptomic technologies. Here, we discuss the methods and tools used in phosphoproteomics and highlight how this technique has been used, and can be used in the future, for cancer research. Challenges still exist in mass spectrometry phosphoproteomics and in the software required to provide biological information from these datasets. Nevertheless, improvements in mass spectrometers with enhanced scan rates, separation capabilities and sensitivity, in biochemical methods for sample preparation and in computational pipelines are enabling an increasingly deep analysis of the phosphoproteome, where previous bottlenecks in data acquisition, processing and interpretation are being relieved. These powerful hardware and algorithmic innovations are not only providing exciting new mechanistic insights into tumour biology, from where new drug targets may be derived, but are also leading to the discovery of phosphoproteins as mediators of drug sensitivity and resistance and as classifiers of disease subtypes. These studies are, therefore, uncovering phosphoproteins as a new generation of disruptive biomarkers to improve personalised anti-cancer therapies.


Assuntos
Neoplasias , Proteômica , Humanos , Proteômica/métodos , Fosforilação , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Fosfoproteínas/metabolismo , Proteoma/metabolismo
9.
Signal Transduct Target Ther ; 8(1): 80, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843114

RESUMO

Acute myeloid leukaemia (AML) patients harbouring certain chromosome abnormalities have particularly adverse prognosis. For these patients, targeted therapies have not yet made a significant clinical impact. To understand the molecular landscape of poor prognosis AML we profiled 74 patients from two different centres (in UK and Finland) at the proteomic, phosphoproteomic and drug response phenotypic levels. These data were complemented with transcriptomics analysis for 39 cases. Data integration highlighted a phosphoproteomics signature that define two biologically distinct groups of KMT2A rearranged leukaemia, which we term MLLGA and MLLGB. MLLGA presented increased DOT1L phosphorylation, HOXA gene expression, CDK1 activity and phosphorylation of proteins involved in RNA metabolism, replication and DNA damage when compared to MLLGB and no KMT2A rearranged samples. MLLGA was particularly sensitive to 15 compounds including genotoxic drugs and inhibitors of mitotic kinases and inosine-5-monosphosphate dehydrogenase (IMPDH) relative to other cases. Intermediate-risk KMT2A-MLLT3 cases were mainly represented in a third group closer to MLLGA than to MLLGB. The expression of IMPDH2 and multiple nucleolar proteins was higher in MLLGA and correlated with the response to IMPDH inhibition in KMT2A rearranged leukaemia, suggesting a role of the nucleolar activity in sensitivity to treatment. In summary, our multilayer molecular profiling of AML with poor prognosis and KMT2A-MLLT3 karyotypes identified a phosphoproteomics signature that defines two biologically and phenotypically distinct groups of KMT2A rearranged leukaemia. These data provide a rationale for the potential development of specific therapies for AML patients characterised by the MLLGA phosphoproteomics signature identified in this study.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Humanos , Rearranjo Gênico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proteínas Nucleares/genética , Fenótipo
10.
iScience ; 26(3): 106107, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36852271

RESUMO

The DNA-damage response is a complex signaling network that guards genomic integrity. The microtubule cytoskeleton is involved in the repair of DNA double-strand breaks; however, little is known about which cytoskeleton-related proteins are involved in DNA repair and how. Using quantitative proteomics, we discovered that microtubule associated proteins MAP7 and MAP7D1 interact with several DNA repair proteins including DNA double-strand break repair proteins RAD50, BRCA1 and 53BP1. We observed that downregulation of MAP7 and MAP7D1 leads to increased phosphorylation of p53 after γ-irradiation. Moreover, we determined that the downregulation of MAP7D1 leads to a strong G1 arrest and that the downregulation of MAP7 and MAP7D1 in G1 arrested cells negatively affects DNA repair, recruitment of RAD50 to chromatin and localization of 53BP1 to the sites of damage. These findings describe for the first time a novel function of MAP7 and MAP7D1 in cell cycle regulation and repair of DNA double-strand breaks.

11.
Mol Cell Proteomics ; 22(4): 100517, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36805445

RESUMO

Acute myeloid leukemia (AML) is a highly heterogeneous cancer of the hematopoietic system with no cure for most patients. In addition to chemotherapy, treatment options for AML include recently approved therapies that target proteins with roles in AML pathobiology, such as FLT3, BLC2, and IDH1/2. However, due to disease complexity, these therapies produce very diverse responses, and survival rates are still low. Thus, despite considerable advances, there remains a need for therapies that target different aspects of leukemic biology and for associated biomarkers that define patient populations likely to respond to each available therapy. To meet this need, drugs that target different AML vulnerabilities are currently in advanced stages of clinical development. Here, we review proteomics and phosphoproteomics studies that aimed to provide insights into AML biology and clinical disease heterogeneity not attainable with genomic approaches. To place the discussion in context, we first provide an overview of genetic and clinical aspects of the disease, followed by a summary of proteins targeted by compounds that have been approved or are under clinical trials for AML treatment and, if available, the biomarkers that predict responses. We then discuss proteomics and phosphoproteomics studies that provided insights into AML pathogenesis, from which potential biomarkers and drug targets were identified, and studies that aimed to rationalize the use of synergistic drug combinations. When considered as a whole, the evidence summarized here suggests that proteomics and phosphoproteomics approaches can play a crucial role in the development and implementation of precision medicine for AML patients.


Assuntos
Leucemia Mieloide Aguda , Medicina de Precisão , Humanos , Proteômica , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Leucemia Mieloide Aguda/genética , Terapia de Alvo Molecular
12.
Bioinformatics ; 39(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448701

RESUMO

MOTIVATION: Pathway inference methods are important for annotating the genome, for providing insights into the mechanisms of biochemical processes and allow the discovery of signalling members and potential new drug targets. Here, we tested the hypothesis that genes with similar impact on cell viability across multiple cell lines belong to a common pathway, thus providing a conceptual basis for a pathway inference method based on correlated anti-proliferative gene properties. METHODS: To test this concept, we used recently available large-scale RNAi screens to develop a method, termed functional pathway inference analysis (FPIA), to systemically identify correlated gene dependencies. RESULTS: To assess FPIA, we initially focused on PI3K/AKT/MTOR signalling, a prototypic oncogenic pathway for which we have a good sense of ground truth. Dependencies for AKT1, MTOR and PDPK1 were among the most correlated with those for PIK3CA (encoding PI3Kα), as returned by FPIA, whereas negative regulators of PI3K/AKT/MTOR signalling, such as PTEN were anti-correlated. Following FPIA, MTOR, PIK3CA and PIK3CB produced significantly greater correlations for genes in the PI3K-Akt pathway versus other pathways. Application of FPIA to two additional pathways (p53 and MAPK) returned expected associations (e.g. MDM2 and TP53BP1 for p53 and MAPK1 and BRAF for MEK1). Over-representation analysis of FPIA-returned genes enriched the respective pathway, and FPIA restricted to specific tumour lineages uncovered cell type-specific networks. Overall, our study demonstrates the ability of FPIA to identify members of pro-survival biochemical pathways in cancer cells. AVAILABILITY AND IMPLEMENTATION: FPIA is implemented in a new R package named 'cordial' freely available from https://github.com/CutillasLab/cordial. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína Supressora de Tumor p53 , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias/genética
13.
Sci Transl Med ; 14(650): eabn3248, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35731890

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological disorder comprising a hierarchy of quiescent leukemic stem cells (LSCs) and proliferating blasts with limited self-renewal ability. AML has a dismal prognosis, with extremely low 2-year survival rates in the poorest cytogenetic risk patients, primarily due to the failure of intensive chemotherapy protocols to deplete LSCs and toxicity of therapy toward healthy hematopoietic cells. We studied the role of cyclin-dependent kinase regulatory subunit 1 (CKS1)-dependent protein degradation in primary human AML and healthy hematopoiesis xenograft models in vivo. Using a small-molecule inhibitor (CKS1i), we demonstrate a dual role for CKS1-dependent protein degradation in reducing patient-derived AML blasts in vivo and, importantly, depleting LSCs, whereas inhibition of CKS1 has the opposite effect on normal hematopoiesis, protecting normal hematopoietic stem cells from chemotherapeutic toxicity. Proteomic analysis of responses to CKS1i in our patient-derived xenograft mouse model demonstrate that inhibition of CKS1 in AML leads to hyperactivation of RAC1 and accumulation of lethal reactive oxygen species, whereas healthy hematopoietic cells enter quiescence in response to CKS1i, protecting hematopoietic stem cells. Together, these findings demonstrate that CKS1-dependent proteostasis is a key vulnerability in malignant stem cell biology.


Assuntos
Quinases relacionadas a CDC2 e CDC28 , Leucemia Mieloide Aguda , Animais , Quinases relacionadas a CDC2 e CDC28/metabolismo , Quinases relacionadas a CDC2 e CDC28/farmacologia , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Células-Tronco Neoplásicas , Proteômica
14.
Mol Cell Proteomics ; 21(6): 100240, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513296

RESUMO

PI3K-mammalian target of rapamycin and MAPK/ERK kinase (MEK)/mitogen-activated protein kinase (MAPK) are the most frequently dysregulated signaling pathways in cancer. A problem that limits the success of therapies that target individual PI3K-MAPK members is that these pathways converge to regulate downstream functions and often compensate each other, leading to drug resistance and transient responses to therapy. In order to overcome resistance, therapies based on cotreatments with PI3K/AKT and MEK/MAPK inhibitors are now being investigated in clinical trials, but the mechanisms of sensitivity to cotreatment are not fully understood. Using LC-MS/MS-based phosphoproteomics, we found that eukaryotic elongation factor 2 kinase (eEF2K), a key convergence point downstream of MAPK and PI3K pathways, mediates synergism to cotreatment with trametinib plus pictilisib (which target MEK1/2 and PI3Kα/δ, respectively). Inhibition of eEF2K by siRNA or with a small molecule inhibitor reversed the antiproliferative effects of the cotreatment with PI3K plus MEK inhibitors in a cell model-specific manner. Systematic analysis in 12 acute myeloid leukemia cell lines revealed that eEF2K activity was increased in cells for which PI3K plus MEKi cotreatment is synergistic, while PKC potentially mediated resistance to such cotreatment. Together, our study uncovers eEF2K activity as a key mediator of responses to PI3Ki plus MEKi and as a potential biomarker to predict synergy to cotreatment in cancer cells.


Assuntos
Neoplasias , Fosfatidilinositol 3-Quinases , Linhagem Celular Tumoral , Cromatografia Líquida , Quinases de Proteína Quinase Ativadas por Mitógeno , Neoplasias/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Espectrometria de Massas em Tandem
15.
Sci Signal ; 15(730): eabl7989, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35439021

RESUMO

Most tumor types either fail to respond or become resistant to kinase inhibitors, often because of compensatory prosurvival pathways in the cancer cell's broader signaling circuitry. Here, we found that intrinsic resistance to kinase inhibitors in cultured primary acute myeloid leukemia (AML) cells may be overcome by reshaping kinase networks into topologies that confer drug sensitivity. We identified several antagonists of chromatin-modifying enzymes that sensitized AML cell lines to kinase inhibitors. Of these, we confirmed that inhibitors of the lysine-specific demethylase (LSD1; also known as KDM1A) rewired kinase signaling in AML cells in a way that increased the activity of the kinase MEK and that broadly suppressed the activity of other kinases and feedback loops. As a result, AML cell lines and about half of primary human AML samples were primed for sensitivity to the MEK inhibitor trametinib. Primary human cells with KRAS mutations and those with high MEK pathway activity were the best responders to sequential treatment with LSD1 inhibitors then trametinib, whereas those with NRAS mutations and high mTOR activity were poor responders. Overall, our study reveals the MEK pathway as a mechanism of resistance to LSD1 inhibitors in AML and shows a way to modulate kinase network circuitry to potentially overcome therapeutic resistance to kinase inhibitors.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Histona Desmetilases , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Lisina , Quinases de Proteína Quinase Ativadas por Mitógeno , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
16.
FEBS Open Bio ; 12(7): 1388-1405, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35478300

RESUMO

Neuroblastoma (NB) is a heterogeneous cancer of the sympathetic nervous system, which accounts for 7-10% of paediatric malignancies worldwide. Due to the lack of targetable molecular aberrations in NB, most treatment options remain relatively nonspecific. Here, we investigated the therapeutic potential of BCI, an inhibitor of DUSP1 and DUSP6, in cultured NB cells. BCI was cytotoxic in a range of NB cell lines and induced a short-lived activation of the AKT and stress-inducible MAP kinases, although ERK phosphorylation was unaffected. Furthermore, a phosphoproteomic screen identified significant upregulation of JNK signalling components and suppression in mTOR and R6K signalling. To assess the specificity of BCI, CRISPR-Cas9 was employed to introduce insertions and deletions in the DUSP1 and DUSP6 genes. Surprisingly, BCI remained fully cytotoxic in NB cells with complete loss of DUSP6 and partial depletion of DUSP1, suggesting that BCI exerts cytotoxicity in NB cells through a complex mechanism that is unrelated to these phosphatases. Overall, these data highlight the risk of using an inhibitor such as BCI as supposedly specific DUSP1/6, without understanding its full range of targets in cancer cells.


Assuntos
Antineoplásicos , Fosfatase 1 de Especificidade Dupla , Fosfatase 6 de Especificidade Dupla , Neuroblastoma , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fosfatase 1 de Especificidade Dupla/genética , Fosfatase 6 de Especificidade Dupla/genética , Humanos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Fosforilação , Transdução de Sinais
17.
Cancer Res ; 82(10): 1909-1925, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35350066

RESUMO

Despite substantial advances in the treatment of solid cancers, resistance to therapy remains a major obstacle to prolonged progression-free survival. Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive cancers, with a high level of liver metastasis. Primary PDAC is highly hypoxic, and metastases are resistant to first-line treatment, including gemcitabine. Recent studies have indicated that endothelial cell (EC) focal adhesion kinase (FAK) regulates DNA-damaging therapy-induced angiocrine factors and chemosensitivity in primary tumor models. Here, we show that inducible loss of EC-FAK in both orthotopic and spontaneous mouse models of PDAC is not sufficient to affect primary tumor growth but reduces liver and lung metastasis load and improves survival rates in gemcitabine-treated, but not untreated, mice. EC-FAK loss did not affect primary tumor angiogenesis, tumor blood vessel leakage, or early events in metastasis, including the numbers of circulating tumor cells, tumor cell homing, or metastatic seeding. Phosphoproteomics analysis showed a downregulation of the MAPK, RAF, and PAK signaling pathways in gemcitabine-treated FAK-depleted ECs compared with gemcitabine-treated wild-type ECs. Moreover, low levels of EC-FAK correlated with increased survival and reduced relapse in gemcitabine-treated patients with PDAC, supporting the clinical relevance of these findings. Altogether, we have identified a new role of EC-FAK in regulating PDAC metastasis upon gemcitabine treatment that impacts outcome. SIGNIFICANCE: These findings establish the potential utility of combinatorial endothelial cell FAK targeting together with gemcitabine in future clinical applications to control metastasis in patients with pancreatic ductal adenocarcinoma.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Células Endoteliais/patologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Camundongos , Recidiva Local de Neoplasia , Neoplasias Pancreáticas/patologia , Gencitabina , Neoplasias Pancreáticas
18.
Methods Mol Biol ; 2420: 87-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34905168

RESUMO

The identification of biomarkers for companion diagnostics is revolutionizing the development of treatments tailored to individual patients in different disease areas including cancer. Precision medicine is most frequently based on the detection of genomic markers that correlate with the efficacy of selected targeted therapies. However, since nongenetic mechanisms also contribute to disease biology, there is a considerable interest of using proteomic techniques as additional source of biomarkers to personalize therapies. In this chapter, we describe label-free mass spectrometry methods for proteomic and phosphoproteomic analysis compatible with routine analysis of clinical samples. We also outline bioinformatic pipelines based on statistical learning that use these proteomics datasets as input to quantify kinase activities and predict drug responses in cancer cells.


Assuntos
Medicina de Precisão , Proteômica , Biomarcadores Tumorais , Humanos , Espectrometria de Massas , Neoplasias/diagnóstico , Neoplasias/genética
19.
Cell Death Dis ; 12(11): 1075, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764236

RESUMO

An early event in lung oncogenesis is loss of the tumour suppressor gene LIMD1 (LIM domains containing 1); this encodes a scaffold protein, which suppresses tumorigenesis via a number of different mechanisms. Approximately 45% of non-small cell lung cancers (NSCLC) are deficient in LIMD1, yet this subtype of NSCLC has been overlooked in preclinical and clinical investigations. Defining therapeutic targets in these LIMD1 loss-of-function patients is difficult due to a lack of 'druggable' targets, thus alternative approaches are required. To this end, we performed the first drug repurposing screen to identify compounds that confer synthetic lethality with LIMD1 loss in NSCLC cells. PF-477736 was shown to selectively target LIMD1-deficient cells in vitro through inhibition of multiple kinases, inducing cell death via apoptosis. Furthermore, PF-477736 was effective in treating LIMD1-/- tumours in subcutaneous xenograft models, with no significant effect in LIMD1+/+ cells. We have identified a novel drug tool with significant preclinical characterisation that serves as an excellent candidate to explore and define LIMD1-deficient cancers as a new therapeutic subgroup of critical unmet need.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Proteínas com Domínio LIM/deficiência , Neoplasias Pulmonares/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos NOD , Estudo de Prova de Conceito , Transfecção
20.
Cancer Res ; 81(22): 5765-5776, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34551960

RESUMO

Cholangiocarcinoma is a form of hepatobiliary cancer with an abysmal prognosis. Despite advances in our understanding of cholangiocarcinoma pathophysiology and its genomic landscape, targeted therapies have not yet made a significant impact on its clinical management. The low response rates of targeted therapies in cholangiocarcinoma suggest that patient heterogeneity contributes to poor clinical outcome. Here we used mass spectrometry-based phosphoproteomics and computational methods to identify patient-specific drug targets in patient tumors and cholangiocarcinoma-derived cell lines. We analyzed 13 primary tumors of patients with cholangiocarcinoma with matched nonmalignant tissue and 7 different cholangiocarcinoma cell lines, leading to the identification and quantification of more than 13,000 phosphorylation sites. The phosphoproteomes of cholangiocarcinoma cell lines and patient tumors were significantly correlated. MEK1, KIT, ERK1/2, and several cyclin-dependent kinases were among the protein kinases most frequently showing increased activity in cholangiocarcinoma relative to nonmalignant tissue. Application of the Drug Ranking Using Machine Learning (DRUML) algorithm selected inhibitors of histone deacetylase (HDAC; belinostat and CAY10603) and PI3K pathway members as high-ranking therapies to use in primary cholangiocarcinoma. The accuracy of the computational drug rankings based on predicted responses was confirmed in cell-line models of cholangiocarcinoma. Together, this study uncovers frequently activated biochemical pathways in cholangiocarcinoma and provides a proof of concept for the application of computational methodology to rank drugs based on efficacy in individual patients. SIGNIFICANCE: Phosphoproteomic and computational analyses identify patient-specific drug targets in cholangiocarcinoma, supporting the potential of a machine learning method to predict personalized therapies.


Assuntos
Antineoplásicos/farmacologia , Colangiocarcinoma/metabolismo , Biologia Computacional/métodos , Fosfoproteínas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteoma/metabolismo , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/patologia , Descoberta de Drogas , Humanos , Fosfoproteínas/análise , Fosfoproteínas/antagonistas & inibidores , Proteoma/análise , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...