Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8010): 165-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38632398

RESUMO

Streptomyces are a genus of ubiquitous soil bacteria from which the majority of clinically utilized antibiotics derive1. The production of these antibacterial molecules reflects the relentless competition Streptomyces engage in with other bacteria, including other Streptomyces species1,2. Here we show that in addition to small-molecule antibiotics, Streptomyces produce and secrete antibacterial protein complexes that feature a large, degenerate repeat-containing polymorphic toxin protein. A cryo-electron microscopy structure of these particles reveals an extended stalk topped by a ringed crown comprising the toxin repeats scaffolding five lectin-tipped spokes, which led us to name them umbrella particles. Streptomyces coelicolor encodes three umbrella particles with distinct toxin and lectin composition. Notably, supernatant containing these toxins specifically and potently inhibits the growth of select Streptomyces species from among a diverse collection of bacteria screened. For one target, Streptomyces griseus, inhibition relies on a single toxin and that intoxication manifests as rapid cessation of vegetative hyphal growth. Our data show that Streptomyces umbrella particles mediate competition among vegetative mycelia of related species, a function distinct from small-molecule antibiotics, which are produced at the onset of reproductive growth and act broadly3,4. Sequence analyses suggest that this role of umbrella particles extends beyond Streptomyces, as we identified umbrella loci in nearly 1,000 species across Actinobacteria.


Assuntos
Antibiose , Proteínas de Bactérias , Toxinas Bacterianas , Streptomyces , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antibiose/efeitos dos fármacos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Proteínas de Bactérias/ultraestrutura , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Microscopia Crioeletrônica , Lectinas/química , Lectinas/genética , Lectinas/metabolismo , Lectinas/ultraestrutura , Testes de Sensibilidade Microbiana , Modelos Moleculares , Streptomyces/química , Streptomyces/efeitos dos fármacos , Streptomyces/genética , Streptomyces/crescimento & desenvolvimento , Streptomyces coelicolor/química , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces griseus/efeitos dos fármacos , Streptomyces griseus/genética , Streptomyces griseus/crescimento & desenvolvimento , Streptomyces griseus/metabolismo
2.
Cell ; 186(22): 4803-4817.e13, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37683634

RESUMO

Patescibacteria, also known as the candidate phyla radiation (CPR), are a diverse group of bacteria that constitute a disproportionately large fraction of microbial dark matter. Its few cultivated members, belonging mostly to Saccharibacteria, grow as epibionts on host Actinobacteria. Due to a lack of suitable tools, the genetic basis of this lifestyle and other unique features of Patescibacteira remain unexplored. Here, we show that Saccharibacteria exhibit natural competence, and we exploit this property for their genetic manipulation. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth, and a transposon-insertion sequencing (Tn-seq) genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii, as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.


Assuntos
Bactérias , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Metagenoma , Metagenômica , Filogenia , Actinobacteria/fisiologia
3.
bioRxiv ; 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37205512

RESUMO

The study of bacteria has yielded fundamental insights into cellular biology and physiology, biotechnological advances and many therapeutics. Yet due to a lack of suitable tools, the significant portion of bacterial diversity held within the candidate phyla radiation (CPR) remains inaccessible to such pursuits. Here we show that CPR bacteria belonging to the phylum Saccharibacteria exhibit natural competence. We exploit this property to develop methods for their genetic manipulation, including the insertion of heterologous sequences and the construction of targeted gene deletions. Imaging of fluorescent protein-labeled Saccharibacteria provides high spatiotemporal resolution of phenomena accompanying epibiotic growth and a transposon insertion sequencing genome-wide screen reveals the contribution of enigmatic Saccharibacterial genes to growth on their Actinobacteria hosts. Finally, we leverage metagenomic data to provide cutting-edge protein structure-based bioinformatic resources that support the strain Southlakia epibionticum and its corresponding host, Actinomyces israelii , as a model system for unlocking the molecular underpinnings of the epibiotic lifestyle.

4.
Nat Methods ; 19(11): 1438-1448, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36253643

RESUMO

Advances in microscopy hold great promise for allowing quantitative and precise measurement of morphological and molecular phenomena at the single-cell level in bacteria; however, the potential of this approach is ultimately limited by the availability of methods to faithfully segment cells independent of their morphological or optical characteristics. Here, we present Omnipose, a deep neural network image-segmentation algorithm. Unique network outputs such as the gradient of the distance field allow Omnipose to accurately segment cells on which current algorithms, including its predecessor, Cellpose, produce errors. We show that Omnipose achieves unprecedented segmentation performance on mixed bacterial cultures, antibiotic-treated cells and cells of elongated or branched morphology. Furthermore, the benefits of Omnipose extend to non-bacterial subjects, varied imaging modalities and three-dimensional objects. Finally, we demonstrate the utility of Omnipose in the characterization of extreme morphological phenotypes that arise during interbacterial antagonism. Our results distinguish Omnipose as a powerful tool for characterizing diverse and arbitrarily shaped cell types from imaging data.


Assuntos
Algoritmos , Microscopia , Processamento de Imagem Assistida por Computador/métodos
5.
Nat Microbiol ; 7(6): 844-855, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35650286

RESUMO

DNA-protein interactions are central to fundamental cellular processes, yet widely implemented technologies for measuring these interactions on a genome scale in bacteria are laborious and capture only a snapshot of binding events. We devised a facile method for mapping DNA-protein interaction sites in vivo using the double-stranded DNA-specific cytosine deaminase toxin DddA. In 3D-seq (DddA-sequencing), strains containing DddA fused to a DNA-binding protein of interest accumulate characteristic mutations in DNA sequence adjacent to sites occupied by the DNA-bound fusion protein. High-depth sequencing enables detection of sites of increased mutation frequency in these strains, yielding genome-wide maps of DNA-protein interaction sites. We validated 3D-seq for four transcription regulators in two bacterial species, Pseudomonas aeruginosa and Escherichia coli. We show that 3D-seq offers ease of implementation, the ability to record binding event signatures over time and the capacity for single-cell resolution.


Assuntos
Citosina Desaminase , Genoma , Bactérias/metabolismo , DNA/metabolismo , Mapeamento de Interação de Proteínas
6.
Cell Host Microbe ; 28(2): 313-321.e6, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32470328

RESUMO

Selective and targeted removal of individual species or strains of bacteria from complex communities can be desirable over traditional, broadly acting antibacterials in several contexts. However, generalizable strategies that accomplish this with high specificity have been slow to emerge. Here we develop programmed inhibitor cells (PICs) that direct the potent antibacterial activity of the type VI secretion system (T6SS) against specified target cells. The PICs express surface-displayed nanobodies that mediate antigen-specific cell-cell adhesion to effectively overcome the barrier to T6SS activity in fluid conditions. We demonstrate the capacity of PICs to efficiently deplete low-abundance target bacteria without significant collateral damage to complex microbial communities. The only known requirements for PIC targeting are a Gram-negative cell envelope and a unique cell surface antigen; therefore, this approach should be generalizable to a wide array of bacteria and find application in medical, research, and environmental settings.


Assuntos
Antibacterianos/metabolismo , Aderência Bacteriana/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Sistemas de Secreção Tipo VI/metabolismo , Animais , Microbioma Gastrointestinal/fisiologia , Bactérias Gram-Negativas/classificação , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...