Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Mol Med ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825644

RESUMO

Inherited peripheral neuropathies (IPNs) are a group of diseases associated with mutations in various genes with fundamental roles in the development and function of peripheral nerves. Over the past 10 years, significant advances in identifying molecular disease mechanisms underlying axonal and myelin degeneration, acquired from cellular biology studies and transgenic fly and rodent models, have facilitated the development of promising treatment strategies. However, no clinical treatment has emerged to date. This lack of treatment highlights the urgent need for more biologically and clinically relevant models recapitulating IPNs. For both neurodevelopmental and neurodegenerative diseases, patient-specific induced pluripotent stem cells (iPSCs) are a particularly powerful platform for disease modeling and preclinical studies. In this review, we provide an update on different in vitro human cellular IPN models, including traditional two-dimensional monoculture iPSC derivatives, and recent advances in more complex human iPSC-based systems using microfluidic chips, organoids, and assembloids.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37008727

RESUMO

Mutations in TDP-43 are known to cause Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). TDP-43 binds to and regulates splicing of several RNA including Zmynd11 . Zmynd11 is a transcriptional repressor and a potential E3 ubiquitin ligase family member, known for its role in neuron and muscle differentiation. Mutations in Zmynd11 have been associated with autism with significant developmental motor delays, intellectual disability, and ataxia. Here, we show that Zmynd11 is aberrantly spliced in the brain and spinal cord of transgenic mice overexpressing a mutant human TDP-43 (A315T), and that these changes occur before the onset of motor symptoms.

3.
Brain ; 146(3): 880-897, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380488

RESUMO

Distal hereditary motor neuropathies (dHMNs) are a group of inherited diseases involving the progressive, length-dependent axonal degeneration of the lower motor neurons. There are currently 29 reported causative genes and four disease loci implicated in dHMN. Despite the high genetic heterogeneity, mutations in the known genes account for less than 20% of dHMN cases, with the mutations identified predominantly being point mutations or indels. We have expanded the spectrum of dHMN mutations with the identification of a 1.35 Mb complex structural variation (SV) causing a form of autosomal dominant dHMN (DHMN1 OMIM %182906). Given the complex nature of SV mutations and the importance of studying pathogenic mechanisms in a neuronal setting, we generated a patient-derived DHMN1 motor neuron model harbouring the 1.35 Mb complex insertion. The DHMN1 complex insertion creates a duplicated copy of the first 10 exons of the ubiquitin-protein E3 ligase gene (UBE3C) and forms a novel gene-intergenic fusion sense transcript by incorporating a terminal pseudo-exon from intergenic sequence within the DHMN1 locus. The UBE3C intergenic fusion (UBE3C-IF) transcript does not undergo nonsense-mediated decay and results in a significant reduction of wild-type full-length UBE3C (UBE3C-WT) protein levels in DHMN1 iPSC-derived motor neurons. An engineered transgenic Caenorhabditis elegans model expressing the UBE3C-IF transcript in GABA-ergic motor neurons shows neuronal synaptic transmission deficits. Furthermore, the transgenic animals are susceptible to heat stress, which may implicate defective protein homeostasis underlying DHMN1 pathogenesis. Identification of the novel UBE3C-IF gene-intergenic fusion transcript in motor neurons highlights a potential new disease mechanism underlying axonal and motor neuron degeneration. These complementary models serve as a powerful paradigm for studying the DHMN1 complex SV and an invaluable tool for defining therapeutic targets for DHMN1.


Assuntos
Atrofia Muscular Espinal , Ubiquitina-Proteína Ligases , Animais , Atrofia Muscular Espinal/genética , Mutação , Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética , Humanos
4.
Dis Model Mech ; 13(2)2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31969342

RESUMO

ATP7A encodes a copper-transporting P-type ATPase and is one of 23 genes in which mutations produce distal hereditary motor neuropathy (dHMN), a group of diseases characterized by length-dependent axonal degeneration of motor neurons. We have generated induced pluripotent stem cell (iPSC)-derived motor neurons from a patient with the p.T994I ATP7A gene mutation as an in vitro model for X-linked dHMN (dHMNX). Patient motor neurons show a marked reduction of ATP7A protein levels in the soma when compared to control motor neurons and failed to upregulate expression of ATP7A under copper-loading conditions. These results recapitulate previous findings obtained in dHMNX patient fibroblasts and in primary cells from a rodent model of dHMNX, indicating that patient iPSC-derived motor neurons will be an important resource for studying the role of copper in the pathogenic processes that lead to axonal degeneration in dHMNX.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Modelos Biológicos , Atrofia Muscular Espinal/patologia , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Regulação para Baixo/genética , Metabolismo Energético , Fibroblastos/metabolismo , Fibroblastos/patologia , Homeostase , Humanos , Cariótipo , Mitocôndrias/metabolismo , Neurônios Motores/patologia , Mutação/genética , Fenótipo , Medula Espinal/patologia
5.
Mol Genet Genomic Med ; 6(3): 422-433, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573232

RESUMO

Inherited peripheral neuropathies (IPNs) are a clinically and genetically heterogeneous group of diseases affecting the motor and sensory peripheral nerves. IPNs have benefited from gene discovery and genetic diagnosis using next-generation sequencing with over 80 causative genes available for testing. Despite this success, up to 50% of cases remain genetically unsolved. In the absence of protein coding mutations, noncoding DNA or structural variation (SV) mutations are a possible explanation. The most common IPN, Charcot-Marie-Tooth neuropathy type 1A (CMT1A), is caused by a 1.5 Mb duplication causing trisomy of the dosage sensitive gene PMP22. Using genome sequencing, we recently identified two large genomic rearrangements causing IPN subtypes X-linked CMT (CMTX3) and distal hereditary motor neuropathy (DHMN1), thereby expanding the spectrum of SV mutations causing IPN. Understanding how newly discovered SVs can cause IPN may serve as a useful paradigm to examine the role of topologically associated domains (TADs), chromatin interactions, and gene dysregulation in disease. This review will describe the growing role of SV in the pathogenesis of IPN and the importance of considering this type of mutation in Mendelian diseases where protein coding mutations cannot be identified.


Assuntos
Doenças do Sistema Nervoso Periférico/genética , Doenças do Sistema Nervoso Periférico/fisiopatologia , Doença de Charcot-Marie-Tooth/genética , Cromatina , Mapeamento Cromossômico , Dosagem de Genes/genética , Genoma , Variação Estrutural do Genoma/genética , Genômica , Neuropatia Hereditária Motora e Sensorial/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação Puntual
6.
Hum Genet ; 135(11): 1269-1278, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27487800

RESUMO

Distal hereditary motor neuropathies predominantly affect the motor neurons of the peripheral nervous system leading to chronic disability. Using whole genome sequencing (WGS) we have identified a novel structural variation (SV) within the distal hereditary motor neuropathy locus on chromosome 7q34-q36.2 (DHMN1). The SV involves the insertion of a 1.35 Mb DNA fragment into the DHMN1 disease locus. The source of the inserted sequence is 2.3 Mb distal to the disease locus at chromosome 7q36.3. The insertion involves the duplication of five genes (LOC389602, RNF32, LMBR1, NOM1, MNX1) and partial duplication of UBE3C. The genomic structure of genes within the DHMN1 locus are not disrupted by the insertion and no disease causing point mutations within the locus were identified. This suggests the novel SV is the most likely DNA mutation disrupting the DHMN1 locus. Due to the size and position of the DNA insertion, the gene(s) directly affected by the genomic re-arrangement remains elusive. Our finding represents a new genetic cause for hereditary motor neuropathies and highlights the growing importance of interrogating the non-coding genome for SV mutations in families which have been excluded for genome wide coding mutations.


Assuntos
Genoma Humano , Variação Estrutural do Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala , Atrofia Muscular Espinal/genética , Mutagênese Insercional/genética , Mapeamento Cromossômico , Cromossomos Humanos Par 7/genética , Feminino , Duplicação Gênica/genética , Humanos , Masculino , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Atrofia Muscular Espinal/patologia , Mutação , Linhagem , Sistema Nervoso Periférico/metabolismo , Sistema Nervoso Periférico/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...