Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(1): e0196723, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38054750

RESUMO

IMPORTANCE: Malaria is caused by parasites of the genus Plasmodium, and reached a global disease burden of 247 million cases in 2021. To study drug resistance mutations and parasite population dynamics, whole-genome sequencing of patient blood samples is commonly performed. However, the predominance of human DNA in these samples imposes the need for time-consuming laboratory procedures to enrich Plasmodium DNA. We used the Oxford Nanopore Technologies' adaptive sampling feature to circumvent this problem and enrich Plasmodium reads directly during the sequencing run. We demonstrate that adaptive nanopore sequencing efficiently enriches Plasmodium reads, which simplifies and shortens the timeline from blood collection to parasite sequencing. In addition, we show that the obtained data can be used for monitoring genetic markers, or to generate nearly complete genomes. Finally, owing to its inherent mobility, this technology can be easily applied on-site in endemic areas where patients would benefit the most from genomic surveillance.


Assuntos
Nanoporos , Parasitos , Plasmodium , Animais , Humanos , Parasitos/genética , Plasmodium/genética , Sequenciamento Completo do Genoma/métodos , DNA de Protozoário/genética , Plasmodium falciparum/genética
2.
Nat Commun ; 14(1): 6392, 2023 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-37872141

RESUMO

Invasive non-typhoidal Salmonella (iNTS) disease manifesting as bloodstream infection with high mortality is responsible for a huge public health burden in sub-Saharan Africa. Salmonella enterica serovar Typhimurium (S. Typhimurium) is the main cause of iNTS disease in Africa. By analysing whole genome sequence data from 1303 S. Typhimurium isolates originating from 19 African countries and isolated between 1979 and 2017, here we show a thorough scaled appraisal of the population structure of iNTS disease caused by S. Typhimurium across many of Africa's most impacted countries. At least six invasive S. Typhimurium clades have already emerged, with ST313 lineage 2 or ST313-L2 driving the current pandemic. ST313-L2 likely emerged in the Democratic Republic of Congo around 1980 and further spread in the mid 1990s. We observed plasmid-borne as well as chromosomally encoded fluoroquinolone resistance underlying emergences of extensive-drug and pan-drug resistance. Our work provides an overview of the evolution of invasive S. Typhimurium disease, and can be exploited to target control measures.


Assuntos
Infecções por Salmonella , Salmonella typhimurium , Humanos , África Subsaariana/epidemiologia , Resistência Microbiana a Medicamentos , Genômica , Infecções por Salmonella/epidemiologia , Salmonella typhimurium/genética
3.
Nat Commun ; 14(1): 3517, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37316492

RESUMO

Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Etiópia/epidemiologia , Genômica , Salmonella/genética
4.
PLoS Negl Trop Dis ; 17(6): e0011285, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37327220

RESUMO

Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, presenting high rates of morbidity and mortality in low- and middle-income countries. The H58 haplotype shows high levels of antimicrobial resistance (AMR) and is the dominant S. Typhi haplotype in endemic areas of Asia and East sub-Saharan Africa. The situation in Rwanda is currently unknown and therefore to reveal the genetic diversity and AMR of S. Typhi in Rwanda, 25 historical (1984-1985) and 26 recent (2010-2018) isolates from Rwanda were analysed using whole genome sequencing (WGS). WGS was locally implemented using Illumina MiniSeq and web-based analysis tools, thereafter complemented with bioinformatic approaches for more in-depth analyses. Whereas historical S. Typhi isolates were found to be fully susceptible to antimicrobials and show a diversity of genotypes, i.e 2.2.2, 2.5, 3.3.1 and 4.1; the recent isolates showed high AMR rates and were predominantly associated with genotype 4.3.1.2 (H58, 22/26; 84,6%), possibly resulting from a single introduction in Rwanda from South Asia before 2010. We identified practical challenges for the use of WGS in endemic regions, including a high cost for shipment of molecular reagents and lack of high-end computational infrastructure for the analyses, but also identified WGS to be feasible in the studied setting and giving opportunity for synergy with other programs.


Assuntos
Salmonella typhi , Febre Tifoide , Humanos , Salmonella typhi/genética , Haplótipos , Antibacterianos/uso terapêutico , Ruanda , Febre Tifoide/epidemiologia , Sequenciamento Completo do Genoma , Testes de Sensibilidade Microbiana
5.
F1000Res ; 102021.
Artigo em Inglês | MEDLINE | ID: mdl-34136128

RESUMO

In this meeting overview, we summarise the scientific program and organisation of the 16th International Society for Computational Biology Student Council Symposium in 2020 (ISCB SCS2020). This symposium was the first virtual edition in an uninterrupted series of symposia that has been going on for 15 years, aiming to unite computational biology students and early career researchers across the globe.


Assuntos
Biologia Computacional , Estudantes , Humanos , Pesquisadores
6.
Microb Genom ; 4(7)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975627

RESUMO

Fluoroquinolone (FQ)-resistant Salmonella spp. were listed by the WHO in 2017 as priority pathogens for which new antibiotics were urgently needed. The overall global burden of Salmonella infections is high, but differs per region. Whereas typhoid fever is most prevalent in South and South-East Asia, non-typhoidal salmonellosis is prevalent across the globe and associated with a mild gastroenteritis. By contrast, invasive non-typhoidal Salmonella cause bloodstream infections associated with high mortality, particularly in sub-Saharan Africa. Most Salmonella strains from clinical sources are resistant to first-line antibiotics, with FQs now being the antibiotic of choice for treatment of invasive Salmonella infections. However, FQ resistance is increasingly being reported in Salmonella, and multiple molecular mechanisms are already described. Whole-genome sequencing (WGS) is becoming more frequently used to analyse bacterial genomes for antibiotic-resistance markers, and to understand the phylogeny of bacteria in relation to their antibiotic-resistance profiles. This mini-review provides an overview of FQ resistance in Salmonella, guided by WGS studies that demonstrate that WGS is a valuable tool for global surveillance.


Assuntos
Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Fluoroquinolonas/uso terapêutico , Infecções por Salmonella/tratamento farmacológico , Salmonella/efeitos dos fármacos , Salmonella/genética , Antibacterianos/farmacologia , Ciprofloxacina/uso terapêutico , Fluoroquinolonas/farmacologia , Marcadores Genéticos , Genoma Bacteriano , Humanos , Filogenia , Salmonella/classificação , Infecções por Salmonella/microbiologia , Febre Tifoide/microbiologia , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...