Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42283-42299, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366685

RESUMO

Fringe pattern based measurement techniques are the state-of-the-art in full-field optical metrology. They are crucial both in macroscale, e.g., fringe projection profilometry, and microscale, e.g., label-free quantitative phase microscopy. Accurate estimation of the local fringe orientation map can significantly facilitate the measurement process in various ways, e.g., fringe filtering (denoising), fringe pattern boundary padding, fringe skeletoning (contouring/following/tracking), local fringe spatial frequency (fringe period) estimation, and fringe pattern phase demodulation. Considering all of that, the accurate, robust, and preferably automatic estimation of local fringe orientation map is of high importance. In this paper we propose a novel numerical solution for local fringe orientation map estimation based on convolutional neural network and deep learning called DeepOrientation. Numerical simulations and experimental results corroborate the effectiveness of the proposed DeepOrientation comparing it with a representative of the classical approach to orientation estimation called combined plane fitting/gradient method. The example proving the effectiveness of DeepOrientation in fringe pattern analysis, which we present in this paper, is the application of DeepOrientation for guiding the phase demodulation process in Hilbert spiral transform. In particular, living HeLa cells quantitative phase imaging outcomes verify the method as an important asset in label-free microscopy.


Assuntos
Algoritmos , Refratometria , Humanos , Refratometria/métodos , Células HeLa , Microscopia/métodos , Redes Neurais de Computação
2.
Opt Lett ; 47(22): 5793-5796, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37219105

RESUMO

Quantitative phase microscopy (QPM) is often based on recording an object-reference interference pattern and its further phase demodulation. We propose pseudo Hilbert phase microscopy (PHPM) where we combine pseudo thermal light source illumination and Hilbert spiral transform (HST) phase demodulation to achieve hybrid hardware-software-driven noise robustness and an increase in resolution of single-shot coherent QPM. Those advantageous features stem from physically altering the laser spatial coherence and numerically restoring spectrally overlapped object spatial frequencies. The capabilities of PHPM are demonstrated by analyzing calibrated phase targets and live HeLa cells in comparison with laser illumination and phase demodulation via temporal phase shifting (TPS) and Fourier transform (FT) techniques. The performed studies verified the unique ability of PHPM to combine single-shot imaging, noise minimization, and preservation of phase details.

3.
Opt Express ; 29(20): 31632-31649, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34615253

RESUMO

Fringe pattern analysis is the central aspect of numerous optical measurement methods, e.g., interferometry, fringe projection, digital holography, quantitative phase microscopy. Experimental fringe patterns always contain significant features originating from fluctuating environment, optical system and illumination quality, and the sample itself that severely affect analysis outcome. Before the stage of phase retrieval (information decoding) interferogram needs proper filtering, which minimizes the impact of mentioned issues. In this paper we propose fully automatic and adaptive fringe pattern pre-processing technique - improved period guided bidimensional empirical mode decomposition algorithm (iPGBEMD). It is based on our previous work about PGBEMD which eliminated the mode-mixing phenomenon and made the empirical mode decomposition fully adaptive. In present work we overcame key problems of original PGBEMD - we have considerably increased algorithm's application range and shortened computation time several-fold. We proposed three solutions to the problem of erroneous decomposition for very low fringe amplitude images, which limited original PGBEMD significantly and we have chosen the best one among them after comprehensive analysis. Several acceleration methods were also proposed and merged to ensure the best results. We combined our improved pre-processing algorithm with the Hilbert Spiral Transform to receive complete, consistent, and versatile fringe pattern analysis path. Quality and effectiveness evaluation, in comparison with selected reference methods, is provided using numerical simulations and experimental fringe data.

4.
Sci Rep ; 10(1): 21644, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277532

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 13955, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811839

RESUMO

Utilizing the refractive index as the endogenous contrast agent to noninvasively study transparent cells is a working principle of emerging quantitative phase imaging (QPI). In this contribution, we propose the Variational Hilbert Quantitative Phase Imaging (VHQPI)-end-to-end purely computational add-on module able to improve performance of a QPI-unit without hardware modifications. The VHQPI, deploying unique merger of tailored variational image decomposition and enhanced Hilbert spiral transform, adaptively provides high quality map of sample-induced phase delay, accepting particularly wide range of input single-shot interferograms (from off-axis to quasi on-axis configurations). It especially promotes high space-bandwidth-product QPI configurations alleviating the spectral overlapping problem. The VHQPI is tailored to deal with cumbersome interference patterns related to detailed locally varying biological objects with possibly high dynamic range of phase and relatively low carrier. In post-processing, the slowly varying phase-term associated with the instrumental optical aberrations is eliminated upon variational analysis to further boost the phase-imaging capabilities. The VHQPI is thoroughly studied employing numerical simulations and successfully validated using static and dynamic cells phase-analysis. It compares favorably with other single-shot phase reconstruction techniques based on the Fourier and Hilbert-Huang transforms, both in terms of visual inspection and quantitative evaluation, potentially opening up new possibilities in QPI.

6.
Opt Express ; 28(1): 435-450, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-32118970

RESUMO

Full-field vibration testing is indispensable in characterization of micro-electro-mechanical components. Time-averaged interference (TAI) microscopy is a very capable and accurate vibration profilometry technique. It employs natural all-optical multiplexing of required information, i.e., recorded interferogram is amplitude-modulated by the Bessel pattern, which in turn encodes spatial distribution of vibration amplitude in its underlying phase function. We propose a complete end-to-end numerical scheme for efficient and robust vibration amplitude map demodulation based on the variational data-analysis paradigm. First, interferogram is variationally pre-filtered and complex analytic-interferogram is generated, exploiting the Hilbert spiral transform. The amplitude term of analytic-interferogram is accessed for Besselogram, i.e., TAI amplitude modulation distribution. Next, the Besselogram is variationally pre-filtered and complex analytic-Besselogram is calculated applying the Hilbert spiral transform. Finally, the phase term of the analytic-Besselogram is determined, unwrapped and post-filtered to achieve spatial distribution of vibration amplitude. Proposed approach is verified using simulated interferograms and corroborated upon experimental vibration testing. Reported method compares favorably with the reference Hilbert-Huang transform-based method. The improvement was gained by adding two new steps to the calculation path: (1) additional removal of the interferogram's residual background and noise and (2) variational based vibration amplitude map error correction method.

7.
Opt Express ; 27(16): 22542-22562, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510545

RESUMO

Successful single-frame fringe pattern preprocessing comprising high-frequency noise minimization and low-frequency background removal represents often the crucial step of the fringe pattern based full-field optical metrology (i.e., interferometry, moiré, structured light). It directly determines the measurement accuracy. Data-driven decomposition by means of the 2D empirical mode decomposition (EMD) serves the filtering purpose in adaptive and detail-preserving manner. The mode-mixing phenomenon resulting in troublesome automatic grouping of modes into three main fringe pattern components (background, information part and noise) is significantly limiting this process, however. In this paper we are introducing the unsupervised variational image decomposition (uVID) model especially tailored to overcome this preprocessing problem and assure successful sparse three-component fringe pattern decomposition. Comprehensive analysis and detailed studies of accomplished significant advancements ensuring automation, versatility and robustness of the proposed approach are provided. Main advancements include: (1) tailoring the VID calculation scheme to fringe pattern preprocessing purpose by focusing onto accurate fringe extraction with tolerance parameter and custom-made decomposition parameter values; (2) fringe pattern tailored BM3D denoising algorithm with fixed parameter values. Numerical and experimental investigations corroborate that the demonstrated uVID method compares favorably with the reference 2D EMD algorithm and classical VID model. Remarkable range of acceptable local variations of the fringe pattern orientation, period, noise, contrast and background terms is to be highlighted.

8.
Opt Express ; 27(3): 1854-1868, 2019 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-30732232

RESUMO

A simple method for generating 2D binary amplitude structure with additive superimposition of mutually orthogonal 1D amplitude gratings is proposed. Its implementation requires software generated three binary amplitude gratings, i.e., the crossed Ronchi, checker board and 1D Ronchi gratings with aspect ratio equal to 0.5. Their computer processing involves only two steps. First the checker grating is multiplied by a high frequency 1D grating. Next the product is added to the crossed grating. In result 3-level transmittance (0, 0.5, 1) hybrid diffraction structure is obtained. The intermediate level results from the use of a dense 1D grating. The zero diffraction order, well separated from the rest of the spectrum, consists of crossed spectra of additively superimposed 1D Ronchi gratings. Detailed heuristic explanation of the process aided by spectrum domain analyses is presented. Additionally, simulations and experiments conducted in the Fresnel diffraction field exemplify the invented structure properties in comparison with the multiplicative superimposition crossed Ronchi grating. Up to authors' best knowledge the Fresnel field (self-imaging phenomenon or Talbot effect) properties of 2D periodic structure with additive superimposition of component 1D gratings have not been published in the literature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...