Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Nature ; 628(8009): 771-775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38632399

RESUMO

Quantitative detection of various molecules at very low concentrations in complex mixtures has been the main objective in many fields of science and engineering, from the detection of cancer-causing mutagens and early disease markers to environmental pollutants and bioterror agents1-5. Moreover, technologies that can detect these analytes without external labels or modifications are extremely valuable and often preferred6. In this regard, surface-enhanced Raman spectroscopy can detect molecular species in complex mixtures on the basis only of their intrinsic and unique vibrational signatures7. However, the development of surface-enhanced Raman spectroscopy for this purpose has been challenging so far because of uncontrollable signal heterogeneity and poor reproducibility at low analyte concentrations8. Here, as a proof of concept, we show that, using digital (nano)colloid-enhanced Raman spectroscopy, reproducible quantification of a broad range of target molecules at very low concentrations can be routinely achieved with single-molecule counting, limited only by the Poisson noise of the measurement process. As metallic colloidal nanoparticles that enhance these vibrational signatures, including hydroxylamine-reduced-silver colloids, can be fabricated at large scale under routine conditions, we anticipate that digital (nano)colloid-enhanced Raman spectroscopy will become the technology of choice for the reliable and ultrasensitive detection of various analytes, including those of great importance for human health.


Assuntos
Coloides , Imagem Individual de Molécula , Análise Espectral Raman , Coloides/química , Hidroxilamina/química , Nanopartículas Metálicas/química , Distribuição de Poisson , Estudo de Prova de Conceito , Reprodutibilidade dos Testes , Prata/química , Imagem Individual de Molécula/métodos , Imagem Individual de Molécula/normas , Análise Espectral Raman/métodos , Análise Espectral Raman/normas , Vibração
2.
Sci Data ; 11(1): 43, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184632

RESUMO

The faithful transmission of a cell's identity and functionality to its daughters during mitosis requires the proper assembly of mitotic chromosomes from interphase chromatin in a process that involves significant changes in the genome-bound material, including the RNA. However, our understanding of the RNA that is associated with the mitotic chromosome is presently limited. Here, we present complete and quantitative characterizations of the full-length mitotic chromosome-associated RNAs (mCARs) for 3 human cell lines, a monkey cell line, and a mouse cell line derived from high-depth RNA sequencing (3 replicates, 47 M mapped read pairs for each replicate). Overall, we identify, on average, more than 20,400 mCAR species per cell-type (including isoforms), more than 5,200 of which are enriched on the chromosome. Notably, overall, more than 2,700 of these mCARs were previously unknown, which thus also expands the annotated genome of these species. We anticipate that these datasets will provide an essential resource for future studies to better understand the functioning of mCARs on the mitotic chromosome and in the cell.


Assuntos
Cromatina , Mamíferos , RNA , Animais , Humanos , Camundongos , Linhagem Celular , Mitose
3.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37958853

RESUMO

Centromeric chromatin is thought to play a critical role in ensuring the faithful segregation of chromosomes during mitosis. However, our understanding of this role is presently limited by our poor understanding of the structure and composition of this unique chromatin. The nucleosomal variant, CENP-A, localizes to narrow regions within the centromere, where it plays a major role in centromeric function, effectively serving as a platform on which the kinetochore is assembled. Previous work found that, within a given cell, the number of microtubules within kinetochores is essentially unchanged between CENP-A-localized regions of different physical sizes. However, it is unknown if the amount of CENP-A is also unchanged between these regions of different sizes, which would reflect a strict structural correspondence between these two key characteristics of the centromere/kinetochore assembly. Here, we used super-resolution optical microscopy to image and quantify the amount of CENP-A and DNA within human centromere chromatin. We found that the amount of CENP-A within CENP-A domains of different physical sizes is indeed the same. Further, our measurements suggest that the ratio of CENP-A- to H3-containing nucleosomes within these domains is between 8:1 and 11:1. Thus, our results not only identify an unexpectedly strict relationship between CENP-A and microtubules stoichiometries but also that the CENP-A centromeric domain is almost exclusively composed of CENP-A nucleosomes.


Assuntos
Microscopia , Nucleossomos , Humanos , Proteína Centromérica A/genética , Proteínas Cromossômicas não Histona/metabolismo , Centrômero/metabolismo , Cromatina , Cinetocoros/metabolismo , Autoantígenos/química
4.
Methods Appl Fluoresc ; 11(4)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37647910

RESUMO

The stoichiometry of molecular components within supramolecular biological complexes is often an important property to understand their biological functioning, particularly within their native environment. While there are well established methods to determine stoichiometryin vitro, it is presently challenging to precisely quantify this propertyin vivo,especially with single molecule resolution that is needed for the characterization stoichiometry heterogeneity. Previous work has shown that optical microscopy can provide some information to this end, but it can be challenging to obtain highly precise measurements at higher densities of fluorophores. Here we provide a simple approach using already established procedures in single-molecule localization microscopy (SMLM) to enable precise quantification of stoichiometry within individual complexes regardless of the density of fluorophores. We show that by focusing on the number of fluorophore detections accumulated during the quasi equilibrium-state of this process, this method yields a 50-fold improvement in precision over values obtained from images with higher densities of active fluorophores. Further, we show that our method yields more correct estimates of stoichiometry with nuclear pore complexes and is easily adaptable to quantify the DNA content with nanodomains of chromatin within individual chromosomes inside cells. Thus, we envision that this straightforward method may become a common approach by which SMLM can be routinely employed for the accurate quantification of subunit stoichiometry within individual complexes within cells.


Assuntos
Microscopia , Imagem Individual de Molécula , Cromatina , Corantes Fluorescentes , Ionóforos
5.
Sci China Life Sci ; 66(8): 1869-1887, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37059927

RESUMO

Protein-biomolecule interactions play pivotal roles in almost all biological processes. For a biomolecule of interest, the identification of the interacting protein(s) is essential. For this need, although many assays are available, highly robust and reliable methods are always desired. By combining a substrate-based proximity labeling activity from the pupylation pathway of Mycobacterium tuberculosis and the streptavidin (SA)-biotin system, we developed the Specific Pupylation as IDEntity Reporter (SPIDER) method for identifying protein-biomolecule interactions. Using SPIDER, we validated the interactions between the known binding proteins of protein, DNA, RNA, and small molecule. We successfully applied SPIDER to construct the global protein interactome for m6A and mRNA, identified a variety of uncharacterized m6A binding proteins, and validated SRSF7 as a potential m6A reader. We globally identified the binding proteins for lenalidomide and CobB. Moreover, we identified SARS-CoV-2-specific receptors on the cell membrane. Overall, SPIDER is powerful and highly accessible for the study of protein-biomolecule interactions.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Proteínas , Ligação Proteica
6.
FEBS Lett ; 597(3): 418-426, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36285639

RESUMO

Whole-organ transcriptomic analyses have emerged as a common method for characterizing developmental transitions in mammalian organs. However, it is unclear if all cell types in an organ follow the whole-organ defined developmental trajectory. Recently, a postnatal two-stage developmental process was described for the mouse stomach. Here, using laser capture microdissection to obtain in situ transcriptomic data, we show that mouse gastric pit cells exhibit four postnatal developmental stages. Interestingly, early stages are characterized by the up-regulation of genes associated with metabolism, a functionality not typically associated with pit cells. Hence, beyond revealing that not all constituent cells develop according to the whole-organ determined pathway, these results broaden our understanding of the pit cell phenotypic landscape during stomach development.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Mucosa Gástrica , Microdissecção e Captura a Laser/métodos , Mamíferos
7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555471

RESUMO

The activation of monocytes and their trans-differentiation into macrophages are critical processes of the immune response. Prior work has characterized the differences in the expression between monocytes and macrophages, but the transitional process between these cells is poorly detailed. Here, we analyzed the temporal changes of the transcriptome during trans-differentiation of primary human monocytes into M0 macrophages. We find changes with many transcription factors throughout the process, the vast majority of which exhibit a maximally different expression at the intermediate stages. A few factors, including AP-1, were previously known to play a role in immunological transitions, but most were not. Thus, these findings indicate that this trans-differentiation requires the dynamic expression of many transcription factors not previously discussed in immunology, and provide a foundation for the delineation of the molecular mechanisms associated with healthy or pathological responses that involve this transition.


Assuntos
Monócitos , Fatores de Transcrição , Humanos , Monócitos/metabolismo , Fatores de Transcrição/metabolismo , Macrófagos/metabolismo , Diferenciação Celular/fisiologia , Transdiferenciação Celular/genética
9.
ACS Nano ; 16(5): 8030-8039, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35485433

RESUMO

The folding of interphase chromatin into highly compact mitotic chromosomes is one of the most recognizable changes during the cell cycle. However, the structural organization underlying this drastic compaction remains elusive. Here, we combine several super resolution methods, including structured illumination microscopy (SIM), binding-activated localization microscopy (BALM), and atomic force microscopy (AFM), to examine the structural details of the DNA within the mitotic chromosome, both in the native state and after up to 30-fold extension using single-molecule micromanipulation. Images of native chromosomes reveal widespread ∼125 nm compact granules (CGs) throughout the metaphase chromosome. However, at maximal extensions, we find exclusively ∼90 nm domains (mitotic nanodomains, MNDs) that are unexpectedly resistant to extensive forces of tens of nanonewtons. The DNA content of the MNDs is estimated to be predominantly ∼80 kb, which is comparable to the size of the inner loops predicted by a recent nested loop model of the mitotic chromosome. With this DNA content, the total volume expected of the human genome assuming closely packed MNDs is nearly identical to what is observed. Thus, altogether, these results suggest that these mechanically stable MNDs, and their higher-order assembly into CGs, are the dominant higher-level structures that underlie the compaction of chromatin from interphase to metaphase.


Assuntos
Cromatina , Cromossomos , Humanos , Cromossomos/metabolismo , Metáfase , DNA/metabolismo , Micromanipulação
10.
Front Cell Dev Biol ; 10: 853188, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35399504

RESUMO

The functioning of tissues is fundamentally dependent upon not only the phenotypes of the constituent cells but also their spatial organization in the tissue, as local interactions precipitate intra-cellular events that often lead to changes in expression. However, our understanding of these processes in tissues, whether healthy or diseased, is limited at present owing to the difficulty in acquiring comprehensive transcriptional programs of spatially- and phenotypically-defined cells in situ. Here we present a robust method based on immunofluorescence-guided laser capture microdissection (immuno-LCM-RNAseq) to acquire finely resolved transcriptional programs with as few as tens of cells from snap-frozen or RNAlater-treated clinical tissues sufficient to resolve even isoforms. The protocol is optimized to protect the RNA with a small molecule inhibitor, the ribonucleoside vanadyl complex (RVC), which thereby enables the typical time-consuming immunostaining and laser capture steps of this procedure during which RNA is usually severely degraded in existing approaches. The efficacy of this approach is exemplified by the characterization of differentially expressed genes between the mouse small intestine lacteal cells at the tip versus the main capillary body, including those that function in sensing and responding to local environmental cues to stimulate intra-cellular signalling. With the extensive repertoire of specific antibodies that are presently available, our method provides an unprecedented capability for the analysis of transcriptional networks and signalling pathways during development, pathogenesis, and aging of specific cell types within native tissues.

11.
Genomics Proteomics Bioinformatics ; 20(1): 101-109, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33631432

RESUMO

Recent studies have characterized the genomic structures of many eukaryotic cells, often focusing on their relation to gene expression. However, these studies have largely investigated cells grown in 2D cultures, although the transcriptomes of 3D-cultured cells are generally closer to their in vivo phenotypes. To examine the effects of spatial constraints on chromosome conformation, we investigated the genomic architecture of mouse hepatocytes grown in 2D and 3D cultures using in situ Hi-C. Our results reveal significant differences in higher-order genomic interactions, notably in compartment identity and strength as well as in topologically associating domain (TAD)-TAD interactions, but only minor differences are found at the TAD level. Our RNA-seq analysis reveals an up-regulated expression of genes involved in physiological hepatocyte functions in the 3D-cultured cells. These genes are associated with a subset of structural changes, suggesting that differences in genomic structure are critically important for transcriptional regulation. However, there are also many structural differences that are not directly associated with changes in gene expression, whose cause remains to be determined. Overall, our results indicate that growth in 3D significantly alters higher-order genomic interactions, which may be consequential for a subset of genes that are important for the physiological functioning of the cell.


Assuntos
Genoma , Genômica , Animais , Linhagem Celular , Cromatina , Células Epiteliais , Regulação da Expressão Gênica , Camundongos
13.
Cytokine Growth Factor Rev ; 63: 44-57, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34836751

RESUMO

The current coronavirus disease 2019 (COVID-19) pandemic has presented unprecedented challenges to global health. Although the majority of COVID-19 patients exhibit mild-to-no symptoms, many patients develop severe disease and need immediate hospitalization, with most severe infections associated with a dysregulated immune response attributed to a cytokine storm. Epidemiological studies suggest that overall COVID-19 severity and morbidity correlate with underlying comorbidities, including diabetes, obesity, cardiovascular diseases, and immunosuppressive conditions. Patients with such comorbidities exhibit elevated levels of reactive oxygen species (ROS) and oxidative stress caused by an increased accumulation of angiotensin II and by activation of the NADPH oxidase pathway. Moreover, accumulating evidence suggests that oxidative stress coupled with the cytokine storm contribute to COVID-19 pathogenesis and immunopathogenesis by causing endotheliitis and endothelial cell dysfunction and by activating the blood clotting cascade that results in blood coagulation and microvascular thrombosis. In this review, we survey the mechanisms of how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces oxidative stress and the consequences of this stress on patient health. We further shed light on aspects of the host immunity that are crucial to prevent the disease during the early phase of infection. A better understanding of the disease pathophysiology as well as preventive measures aimed at lowering ROS levels may pave the way to mitigate SARS-CoV-2-induced complications and decrease mortality.


Assuntos
COVID-19 , Trombose , Síndrome da Liberação de Citocina , Humanos , Estresse Oxidativo , SARS-CoV-2
14.
ACS Cent Sci ; 7(12): 2092-2098, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34963901

RESUMO

There is presently intense interest in the development of synthetic nanopores that recapitulate the functional properties of biological water channels for a wide range of applications. To date, all known synthetic water channels have a hydrophobic lumen, and while many exhibit a comparable rate of water transport as biological water channels, there is presently no rationally designed system with the ability to regulate water transport, a critical property of many natural water channels. Here, we describe a self-assembling nanopore consisting of stacked macrocyclic molecules with a hybrid hydrophilic/hydrophobic lumen exhibiting water transport that can be regulated by alkali metal ions. Stopped-flow kinetic assays reveal a non-monotonic-dependence of transport on cation size as well as a strikingly broad range of water flow, from essentially none in the presence of the sodium ion to as high a flow as that of the biological water channel, aquaporin 1, in the absence of the cations. All-atom molecular dynamics simulations show that the mechanism underlying the observed sensitivity is the binding of cations to defined sites within this hybrid pore, which perturbs water flow through the channel. Thus, beyond revealing insights into factors that can modulate a high-flux water transport through sub-nm pores, the obtained results provide a proof-of-concept for the rational design of next-generation, controllable synthetic water channels.

15.
Hereditas ; 158(1): 43, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34740370

RESUMO

Immortalized cell lines have long been used as model systems to systematically investigate biological processes under controlled and reproducible conditions, providing insights that have greatly advanced cellular biology and medical sciences. Recently, the widely used monocytic leukemia cell line, THP-1, was comprehensively examined to understand mechanistic relationships between the 3D chromatin structure and transcription during the trans-differentiation of monocytes to macrophages. To corroborate these observations in primary cells, we analyze in situ Hi-C and RNA-seq data of human primary monocytes and their differentiated macrophages in comparison to that obtained from the monocytic/macrophagic THP-1 cells. Surprisingly, we find significant differences between the primary cells and the THP-1 cells at all levels of chromatin structure, from loops to topologically associated domains to compartments. Importantly, the compartment-level differences correlate significantly with transcription: those genes that are in A-compartments in the primary cells but are in B-compartments in the THP-1 cells exhibit a higher level of expression in the primary cells than in the THP-1 cells, and vice versa. Overall, the genes in these different compartments are enriched for a wide range of pathways, and, at least in the case of the monocytic cells, their altered expression in certain pathways in the THP-1 cells argues for a less immune cell-like phenotype, suggesting that immortalization or prolonged culturing of THP-1 caused a divergence of these cells from their primary counterparts. It is thus essential to reexamine phenotypic details observed in cell lines with their primary counterparts so as to ensure a proper understanding of functional cell states in vivo.


Assuntos
Monócitos , Transcriptoma , Diferenciação Celular , Humanos , Macrófagos , Células THP-1
16.
Int Immunopharmacol ; 97: 107686, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33930705

RESUMO

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is having a disastrous impact on global health. Recently, several studies examined the potential of vitamin D to reduce the effects of SARS-CoV-2 infection by modulating the immune system. Indeed, vitamin D has been found to boost the innate immune system and stimulate the adaptive immune response against SARS-CoV-2 infection. In this review, we provide a comprehensive update of the immunological mechanisms underlying the positive effects of vitamin D in reducing SARS-CoV-2 infection as well as a thorough survey of the recent epidemiological studies and clinical trials that tested vitamin D as a potential therapeutic agent against COVID-19 infection. We believe that a better understanding of the histopathology and immunopathology of the disease as well as the mechanism of vitamin D effects on COVID-19 severity will ultimately pave the way for a more effective prevention and control of this global pandemic.


Assuntos
COVID-19/prevenção & controle , Vitamina D/farmacologia , Vitamina D/uso terapêutico , Imunidade Adaptativa/efeitos dos fármacos , COVID-19/etiologia , COVID-19/imunologia , Suplementos Nutricionais , Humanos , Imunidade Inata/efeitos dos fármacos , Estações do Ano , Índice de Gravidade de Doença , Vitamina D/imunologia , Vitamina D/metabolismo
17.
IEEE Trans Biomed Eng ; 68(11): 3301-3307, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33788676

RESUMO

OBJECTIVE: To alleviate the severe limitation of the prohibitively long process of immune-fluorescence labeling on the routine applications of revolutionary intact tissue clearing techniques in diverse biomedical arenas. METHODS: We proposed an easily adaptable approach, electro-enhanced rapid staining (EERS), for highly efficient and fast immuno-labeling of thick clarified tissues. In EERS, an optimized and precisely controlled weak external electric field is engineered into a compact device to enable efficient and uniform transport of antibodies into clarified tissues while minimizing the detrimental effect of macromolecular crowding at the tissue-solution interface. RESULTS AND CONCLUSIONS: The experimental results show that, with EERS, a current density of only ∼0.2 mA mm-2 is sufficient to achieve uniform labeling of clarified tissues of several millimeters thick in a few hours without detectable tissue damage. In addition, the amount of antibodies required is also several-fold lower than conventional immuno-labeling assays under comparable conditions. SIGNIFICANCE: It is expected that the implementation of EERS in most laboratories should significantly expedite the application of tissue clearing in a broad range of research explorations, both basic and clinical.


Assuntos
Anticorpos , Coloração e Rotulagem
18.
Nat Commun ; 12(1): 205, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420075

RESUMO

Single-cell chromatin studies provide insights into how chromatin structure relates to functions of individual cells. However, balancing high-resolution and genome wide-coverage remains challenging. We describe a computational method for the reconstruction of large 3D-ensembles of single-cell (sc) chromatin conformations from population Hi-C that we apply to study embryogenesis in Drosophila. With minimal assumptions of physical properties and without adjustable parameters, our method generates large ensembles of chromatin conformations via deep-sampling. Our method identifies specific interactions, which constitute 5-6% of Hi-C frequencies, but surprisingly are sufficient to drive chromatin folding, giving rise to the observed Hi-C patterns. Modeled sc-chromatins quantify chromatin heterogeneity, revealing significant changes during embryogenesis. Furthermore, >50% of modeled sc-chromatin maintain topologically associating domains (TADs) in early embryos, when no population TADs are perceptible. Domain boundaries become fixated during development, with strong preference at binding-sites of insulator-complexes upon the midblastula transition. Overall, high-resolution 3D-ensembles of sc-chromatin conformations enable further in-depth interpretation of population Hi-C, improving understanding of the structure-function relationship of genome organization.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/química , Drosophila/genética , Desenvolvimento Embrionário , Animais , Biofísica , Cromossomos de Insetos/química , Cromossomos de Insetos/genética , Biologia Computacional , Heterogeneidade Genética , Genoma , Modelos Moleculares , Conformação Molecular
19.
Angew Chem Int Ed Engl ; 60(6): 3055-3061, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33084179

RESUMO

Owing to the challenges to acquire detailed spatial information of gut bacteria in situ, three-dimensional (3D) microbiota distributions in the gut remain largely uncharted. Here, we propose a tissue clearing-based and D-amino acid labeling-facilitated (TiDaL) strategy that combines a novel microbiota in vivo labeling protocol, CUBIC-based tissue clearing and whole-mount tissue imaging, to achieve 3D imaging of indigenous gut microbiota. We demonstrate high-resolution 3D acquisition of their biogeography in different gut sections, and present quantitative spatial details in relation to the host epithelium. We unexpectedly observe microbiota in the small intestine crypts, which were thought to be bacteria-free. Significant bacterial overgrowth in the first two-thirds of the small intestine is detected in an enteritis model. We expect that this quantitative 3D imaging strategy for native gut microbiota will provide insightful information into the host-microbiota interactions.


Assuntos
Microbioma Gastrointestinal , Imageamento Tridimensional/métodos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Carbocianinas/química , Sulfato de Dextrana/química , Sulfato de Dextrana/metabolismo , Corantes Fluorescentes/química , Intestinos/microbiologia , Camundongos , Imagem Óptica
20.
Anal Chim Acta ; 1112: 8-15, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32334685

RESUMO

One of the most widely used approaches to characterize transmembrane ion transport through nanoscale synthetic or biological channels is a straightforward, liposome-based assay that monitors changes in ionic flux across the vesicle membrane using pH- or ion-sensitive dyes. However, failure to account for the precise experimental conditions, in particular the complete ionic composition on either side of the membrane and the inherent permeability of ions through the lipid bilayer itself, can prevent quantifications and lead to fundamentally incorrect conclusions. Here we present a quantitative model for this assay based on the Goldman-Hodgkin-Katz flux theory, which enables accurate measurements and identification of optimal conditions for the determination of ion channel permeability and selectivity. Based on our model, the detection sensitivity of channel permeability is improved by two orders of magnitude over the commonly used experimental conditions. Further, rather than obtaining qualitative preferences of ion selectivity as is typical, we determine quantitative values of these parameters under rigorously controlled conditions even when the experimental results would otherwise imply (without our model) incorrect behavior. We anticipate that this simply employed ultrasensitive assay will find wide application in the quantitative characterization of synthetic or biological ion channels.


Assuntos
Canais Iônicos/análise , Canais Iônicos/metabolismo , Transporte de Íons , Lipossomos/química , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...