Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123057, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37451212

RESUMO

This work provides new insight into the state of water in a series of aliphatic ketones. For our studies, we selected nine aliphatic ketones of different size and structure to examine the effect of various structural motifs on behavior of water in the mixtures. Our results reveal that conformational flexibility of aliphatic chains in the linear ketones allows for effective shielding of the carbonyl group, and this flexibility is the main reason for poor solubility of water. Hence, in the linear ketones molecules of water are involved mostly in ketone-water interactions, while the water-water interactions are rare. Higher solubility of water in the cyclic ketones allows for creation of clusters of water, where the molecules are in water-like environment. The temperature rise in wet cyclic ketones increases population of ketone-water interactions at the expense of the water-water ones, while in the linear ketones and 2,6-dimethylcyclohexanone at an elevated temperature there is an increase in the population of singly bonded water at the expense of the doubly bonded one. DFT calculations reveal that the substitution of cyclohexanone by a single methyl group does not affect the strength of the ketone-water interactions, while it has a significant impact on the solubility of water in the ketone. The most important conclusion from this study is that the accessibility of the carbonyl group is the most important factor determining the intermolecular interactions and solubility of water in aliphatic ketones.

2.
Appl Spectrosc ; 76(1): 28-37, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34643138

RESUMO

This work provides new insight into assembling of phenol in various solvents and competition between different kinds of interactions. To examine both weak and strong interactions, we selected a series of non-aromatic and aromatic solvents. Infrared spectra were measured at low (0.05 M) and high (2 M) phenol content. In addition, we performed density functional theory calculations of the structures and harmonic vibrational spectra of 1:1 complexes of phenol with the solvents and the associates of phenol from dimer to tetramer. Based on these results, we divided the solvents into three groups. The first group consists of non-aromatic solvents weakly interacting with phenol. Depending on the concentration, molecules of phenol in these solvents remain non-bonded or self-associated. In diluted solutions of phenol in chlorinated non-aromatic solvents do not appear free OH groups, since they are involved in a weak OH···Cl interaction. It is of note that in diluted solutions of phenol in tetramethyl ethylene both the non-bonded and bonded OH coexists due to solvent-solvent interactions. The second group consists of aromatic solvents with methyl or chlorine substituents. At low concentration, the molecules of phenol are involved in the phenol-solvent OH···π interaction and the strength of these interactions depends on the solvent properties. At a higher phenol content an equilibrium exists between phenol-solvent OH···π and phenol-phenol OH···OH interactions. Finally, the third group includes the aromatic and non-aromatic solvents with highly polar group (C≡N). In these solvents, regardless of the concentration all molecules of phenol are involved in the solute-solvent OH···NC interaction. Comparison of the experimental and theoretical band parameters reveals that molecules of phenol in non-aromatic solvents prefer the cyclic associates, while in the aromatic solvents they tend to form the linear associates.

3.
Phys Chem Chem Phys ; 23(35): 19188-19194, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34524284

RESUMO

Near-infrared (NIR) spectra of phenol in a series of non-aromatic and aromatic solvents were recorded to study the competition between various types of solute-solute and solute-solvent interactions. Depending on the phenol concentration, the free OH and OH involved in the OH⋯OH interactions in the dimers and higher associates are present in cyclohexane solutions. On the other hand, free OH does not appear in Cl-containing solvents since at a low phenol content the OH groups participate in the OH⋯Cl interactions. In CCl4 and tetrachloroethylene this interaction is weak, while in chlorobenzene the strength of this interaction is higher. In the aromatic solvents the solute-solute OH⋯OH interactions compete with the solute-solvent OH⋯π and aromatic CH⋯OH ones. Consequently, the degree of self-association of phenol in aromatic solvents is smaller than that in non-aromatic ones. The strength of the OH⋯π interactions increases with growing electron-donating ability of the substituents in the benzene derivatives. This observation obtained from the NIR spectra is in line with the results of the theoretical calculations (DFT). A clear correlation appears between the number of methyl groups in aromatic solvents and the population of the free OH groups. The methyl groups are steric hindrances and impede the formation of the OH⋯OH and OH⋯π interactions. Our results suggest the presence of aromatic CH⋯OH solute-solvent interactions, not observed in previous studies. NIR spectroscopy appears to be a powerful tool for exploration of free and weakly-bonded OH groups.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119176, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33257247

RESUMO

This work presents new experimental and theoretical insights on vibrational spectra of CH3I and CD3I in the liquid phase. For the first time, we provided the contributions from different vibrational modes to mid-infrared (MIR) and near-infrared (NIR) spectra and estimated the extent of anharmonicity in the MIR region. Direct comparison of the intensities from ATR-IR and NIR transmission spectra was possible due to normalization of ATR-IR spectra. As a reference for normalization, we applied the area of the νs(CH3)/νs(CD3) band recorded in transmission mode. Our results show that the corresponding vibrational modes of CH3I and CD3I have similar contributions to the total intensity (MIR + NIR), however, these contributions are distributed in a different way between MIR and NIR regions. As expected, most of intensity in MIR spectra originates from the fundamental transitions (>90%). The fundamental bands together with the first overtones and the binary combinations contribute to more than 99% of MIR intensity for both compounds. Therefore, reliable reconstruction of MIR spectra can be achieved by considering only these vibrational modes. On the other hand, accurate simulation of NIR spectra requires including the higher-order transitions. In the case of CD3I, the fourth-order transitions contribute to 12.7% of NIR intensity. The contributions from NIR region are significantly smaller than those from MIR range and were estimated to be 6.7% for CH3I and 2.3% for CD3I. The theoretical calculations provide a reasonable estimation of the total contribution from the fundamental bands. Yet, the calculated contributions from the anharmonic transitions are different from those obtained from the experimental data. MIR spectra of CH3I and CD3I reveal an unexpected increase in the intensity of some overtones and combination bands indicating the presence of Fermi resonances. These resonances are responsible for differences in contributions from the first overtones and binary combinations between CH3I and CD3I.

5.
J Phys Chem A ; 123(20): 4431-4442, 2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31017787

RESUMO

The νCN band (νC≡N) is a sensitive probe of the state of molecules with nitrile groups. Hence, physicochemical properties of acetonitrile and its derivatives have been frequently investigated by means of vibrational (IR and Raman) spectroscopy. Near-infrared (NIR) spectroscopy combined with high-level quantum mechanical calculations offers deeper physical insight into the structure of liquid nitriles not available from the fundamental region. This results from unique information provided by the overtones of νCN. Here, we report an application of anharmonic vibrational calculations coupled with IR, NIR, and Raman spectroscopy for investigation of the structure of CH3CN, CD3CN, and CCl3CN in the liquid phase. The computational part was based on generalized vibrational second-order perturbation theory (GVPT2) applied on the density function theory (B3LYP, M06-2X, and B2PLYP) level to monomers as well as linear and cyclic dimers. The obtained data were refined by counterpoise-corrected MP2 calculations to mimic the aggregation in the liquid state. Our results evidence that the intensity variations between the fundamental, first and second overtones of the νCN band depend on the symmetry of aggregated species. The symmetry of the cyclic dimers in liquid nitriles was elucidated from the relative intensity of the 2νCN band. This work advances our understanding of the vibrational spectra of acetonitrile and its derivatives by providing detailed band assignment of IR, NIR, and Raman spectra. For the first time, we reported the position of the first and second overtones of the nitrile group.

6.
Artigo em Inglês | MEDLINE | ID: mdl-29395933

RESUMO

Here we report ATR-IR spectroscopic study on the separation at a molecular level (microheterogeneity) and the degree of deviation of H2O/CH3OH and H2O/CD3OH mixtures from the ideal mixture. Of particular interest is the effect of isotopic substitution in methyl group on molecular structure and interactions in both mixtures. To obtain comprehensive information from the multivariate data we applied the excess molar absorptivity spectra together with two-dimensional correlation analysis (2DCOS) and chemometric methods. In addition, the experimental results were compared and discussed with the structures of various model clusters obtained from theoretical (DFT) calculations. Our results evidence the presence of separation at a molecular level and deviation from the ideal mixture for both mixtures. The experimental and theoretical results show that the maximum of these deviations appears at equimolar mixture. Both mixtures consist of three kinds of species: homoclusters of water and methanol and mixed clusters (heteroclusters). The heteroclusters exist in the whole range of mole fractions with the maximum close to the equimolar mixture. At this mixture composition near 55-60% of molecules are involved in heteroclusters. In contrast, the homoclusters of water occur in a limited range of mole fractions (XME < 0.85-0.9). Upon mixing the molecules of methanol form weaker hydrogen bonding as compared with the pure alcohol. In contrast, the molecules of water in the mixture are involved in stronger hydrogen bonding than those in bulk water. All these results indicate that both mixtures have similar degree of deviation from the ideal mixture.

8.
Appl Spectrosc ; 64(3): 351-8, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20223073

RESUMO

The effect of temperature and water content on the molecular structure and hydrogen bonding of 2-aminoethanol (2AE), 1-amino-2-propanol (2AP), and 3-amino-1-propanol (3AP) has been examined by Fourier transform near-infrared (FT-NIR) spectroscopy. The experimental spectra were analyzed using the two-dimensional (2D) correlation approach and chemometrics methods. Interpretation of the spectra was guided by density functional theory (DFT) calculations. The novelty of the present work relates to the interpretation of the spectra of aminoalcohols in the liquid phase and their mixtures with water based on dimeric structures. The molecules of 2AE and 2AP form stable cyclic dimers through the intermolecular O-H...N hydrogen bonds (HBs), whereas the intramolecular HBs are absent. In contrast, the molecules of 3AP create two kinds of dimers. The first dimer has two intermolecular O-H...N HBs and two intramolecular N-H...O HBs, while the second dimer has the opposite. In the liquid phase the cyclic dimers interact with each other and form higher associates through the intermolecular N-H...O HBs. The temperature rise weakens these interactions but the structure of the dimers remains intact. The majority of the molecules of water act as double proton donors to oxygens linking different molecules of aminoalcohol. This cooperative hydrogen bonding is stronger than that in bulk water. A small amount of one-bonded water occurs in the mixtures, and the population of this species increases with the temperature rise. At higher water content small clusters of water are formed. On the basis of the present results one can conclude that addition of water does not lead to noticeable variations in the structure of liquid aminoalcohols. More significant changes are induced by the temperature variations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...