Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(8): 101149, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37552991

RESUMO

SARS-CoV-2 infection and mRNA vaccination both elicit spike (S)-specific T cell responses. To analyze how T cell memory from prior infection influences T cell responses to vaccination, we evaluated functional T cell responses in naive and previously infected vaccine recipients. Pre-vaccine S-specific responses are predictive of subsequent CD8+ T cell vaccine-response magnitudes. Comparing baseline with post-vaccination TCRß repertoires, we observed large clonotypic expansions correlated with the frequency of spike-specific T cells. Epitope mapping the largest CD8+ T cell responses confirms that an HLA-A∗03:01 epitope was highly immunodominant. Peptide-MHC tetramer staining together with mass cytometry and single-cell sequencing permit detailed phenotyping and clonotypic tracking of these S-specific CD8+ T cells. Our results demonstrate that infection-induced S-specific CD8+ T cell memory plays a significant role in shaping the magnitude and clonal composition of the circulating T cell repertoire after vaccination, with mRNA vaccination promoting CD8+ memory T cells to a TEMRA-like phenotype.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Humanos , COVID-19/prevenção & controle , Células T de Memória , SARS-CoV-2 , Vacinação , Epitopos , Antígenos Comuns de Leucócito
2.
Nat Commun ; 14(1): 3417, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37296110

RESUMO

Long COVID or post-acute sequelae of SARS-CoV-2 (PASC) is a clinical syndrome featuring diverse symptoms that can persist for months following acute SARS-CoV-2 infection. The aetiologies may include persistent inflammation, unresolved tissue damage or delayed clearance of viral protein or RNA, but the biological differences they represent are not fully understood. Here we evaluate the serum proteome in samples, longitudinally collected from 55 PASC individuals with symptoms lasting ≥60 days after onset of acute infection, in comparison to samples from symptomatically recovered SARS-CoV-2 infected and uninfected individuals. Our analysis indicates heterogeneity in PASC and identified subsets with distinct signatures of persistent inflammation. Type II interferon signaling and canonical NF-κB signaling (particularly associated with TNF), appear to be the most differentially enriched signaling pathways, distinguishing a group of patients characterized also by a persistent neutrophil activation signature. These findings help to clarify biological diversity within PASC, identify participants with molecular evidence of persistent inflammation, and highlight dominant pathways that may have diagnostic or therapeutic relevance, including a protein panel that we propose as having diagnostic utility for differentiating inflammatory and non-inflammatory PASC.


Assuntos
COVID-19 , Síndrome de COVID-19 Pós-Aguda , Humanos , SARS-CoV-2 , Proteínas Sanguíneas , Progressão da Doença , Inflamação
3.
JCI Insight ; 6(15)2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34156975

RESUMO

The ectocervix is part of the lower female reproductive tract (FRT), which is susceptible to sexually transmitted infections (STIs). Comprehensive knowledge of the phenotypes and T cell receptor (TCR) repertoire of tissue-resident memory T cells (TRMs) in the human FRT is lacking. We took single-cell RNA-Seq approaches to simultaneously define gene expression and TCR clonotypes of the human ectocervix. There were significantly more CD8+ than CD4+ T cells. Unsupervised clustering and trajectory analysis identified distinct populations of CD8+ T cells with IFNGhiGZMBloCD69hiCD103lo or IFNGloGZMBhiCD69medCD103hi phenotypes. Little overlap was seen between their TCR repertoires. Immunofluorescence staining showed that CD103+CD8+ TRMs were preferentially localized in the epithelium, whereas CD69+CD8+ TRMs were distributed evenly in the epithelium and stroma. Ex vivo assays indicated that up to 14% of cervical CD8+ TRM clonotypes were HSV-2 reactive in HSV-2-seropositive persons, reflecting physiologically relevant localization. Our studies identified subgroups of CD8+ TRMs in the human ectocervix that exhibited distinct expression of antiviral defense and tissue residency markers, anatomic locations, and TCR repertoires that target anatomically relevant viral antigens. Optimization of the location, number, and function of FRT TRMs is an important approach for improving host defenses to STIs.


Assuntos
Antígenos CD/análise , Antígenos de Diferenciação de Linfócitos T/análise , Linfócitos T CD8-Positivos/imunologia , Colo do Útero , Herpesvirus Humano 2 , Cadeias alfa de Integrinas/análise , Lectinas Tipo C/análise , Imunidade Adaptativa , Linfócitos T CD4-Positivos/imunologia , Colo do Útero/imunologia , Colo do Útero/patologia , Colo do Útero/virologia , Feminino , Genes Codificadores dos Receptores de Linfócitos T/imunologia , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/isolamento & purificação , Humanos , Memória Imunológica , Imunofenotipagem/métodos , Células T de Memória/imunologia , Mucosa/imunologia , Mucosa/patologia , Mucosa/virologia
4.
bioRxiv ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34075380

RESUMO

SARS-CoV-2 has infected over 200 million and caused more than 4 million deaths to date. Most individuals (>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune response in individuals with mild COVID-19 beginning with early time points post-infection (1-15 days) and proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive immune activation that differed in character by age (young vs. old). We then characterized signals associated with recovery and convalescence to define and validate a new signature of inflammatory cytokines, gene expression, and chromatin accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC).

5.
Clin Infect Dis ; 73(7): e2407-e2414, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32644127

RESUMO

BACKGROUND: KAF156 is a novel antimalarial drug that is active against both liver- and blood-stage Plasmodium parasites, including drug-resistant strains. Here, we investigated the causal prophylactic efficacy of KAF156 in a controlled human malaria infection (CHMI) model. METHODS: In part 1, healthy, malaria-naive participants received 800 mg KAF156 or placebo 3 hours before CHMI with P. falciparum-infected mosquitoes. In part 2, KAF156 was administered as single doses of 800, 300, 100, 50, or 20 mg 21 hours post-CHMI. All participants received atovaquone/proguanil treatment if blood-stage infection was detected or on day 29. For each cohort, 7-14 subjects were enrolled to KAF156 treatment and up to 4 subjects to placebo. RESULTS: KAF156 at all dose levels was safe and well tolerated. Two serious adverse events were reported-both resolved without sequelae and neither was considered related to KAF156. In part 1, all participants treated with KAF156 and none of those randomized to placebo were protected against malaria infection. In part 2, all participants treated with placebo or 20 mg KAF156 developed malaria infection. In contrast, 50 mg KAF156 protected 3 of 14 participants from infection, and doses of 800, 300, and 100 mg KAF156 protected all subjects against infection. An exposure-response analysis suggested that a 24-hour postdose concentration of KAF156 of 21.5 ng/mL (90% confidence interval, 17.66-25.32 ng/mL) would ensure a 95% chance of protection from malaria parasite infection. CONCLUSIONS: KAF156 was safe and well tolerated and demonstrated high levels of pre- and post-CHMI protective efficacy. CLINICAL TRIALS REGISTRATION: NCT04072302.


Assuntos
Antimaláricos , Malária Falciparum , Animais , Antimaláricos/uso terapêutico , Humanos , Imidazóis/uso terapêutico , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Piperazinas , Plasmodium falciparum
6.
JCI Insight ; 1(8)2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27331143

RESUMO

Conventional memory CD8+ T cells and mucosal-associated invariant T cells (MAIT cells) are found in blood, liver, and mucosal tissues and have similar effector potential following activation, specifically expression of IFN-γ and granzyme B. To better understand each subset's unique contributions to immunity and pathology, we interrogated inflammation- and TCR-driven activation requirements using human memory CD8+ T and MAIT cells isolated from blood and mucosal tissue biopsies in ex vivo functional assays and single cell gene expression experiments. We found that MAIT cells had a robust IFN-γ and granzyme B response to inflammatory signals but limited responsiveness when stimulated directly via their TCR. Importantly, this is not due to an overall hyporesponsiveness to TCR signals. When delivered together, TCR and inflammatory signals synergize to elicit potent effector function in MAIT cells. This unique control of effector function allows MAIT cells to respond to the same TCR signal in a dichotomous and situation-specific manner. We propose that this could serve to prevent responses to antigen in noninflamed healthy mucosal tissue, while maintaining responsiveness and great sensitivity to inflammation-eliciting infections. We discuss the implications of these findings in context of inflammation-inducing damage to tissues such as BM transplant conditioning or HIV infection.

7.
Cell ; 160(3): 420-32, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25635456

RESUMO

The barrier to curing HIV-1 is thought to reside primarily in CD4(+) T cells containing silent proviruses. To characterize these latently infected cells, we studied the integration profile of HIV-1 in viremic progressors, individuals receiving antiretroviral therapy, and viremic controllers. Clonally expanded T cells represented the majority of all integrations and increased during therapy. However, none of the 75 expanded T cell clones assayed contained intact virus. In contrast, the cells bearing single integration events decreased in frequency over time on therapy, and the surviving cells were enriched for HIV-1 integration in silent regions of the genome. Finally, there was a strong preference for integration into, or in close proximity to, Alu repeats, which were also enriched in local hotspots for integration. The data indicate that dividing clonally expanded T cells contain defective proviruses and that the replication-competent reservoir is primarily found in CD4(+) T cells that remain relatively quiescent.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , HIV-1/fisiologia , Integração Viral , Latência Viral , Elementos Alu , Células Clonais , Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Memória Imunológica , Provírus/fisiologia , Análise de Célula Única
8.
J Immunol Methods ; 404: 71-80, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24374374

RESUMO

HIV replication is unrestrained in vivo in the vast majority of infected subjects, and the ability of some rare individuals to control this virus is poorly understood. Standard immunogenicity assays for detecting HIV-1-specific CD8(+) T-cell responses, such as IFN-γ ELISpot and intracellular cytokine staining, generally fail to correlate with in vivo inhibition of HIV replication. Several viral inhibition assays, which measure the effectiveness of CD8(+) T-cell responses in suppressing HIV replication in vitro, have been described; but most depend on in vitro expansion of CD8(+) T cells, and some show inhibitory activity in HIV-negative individuals. We have optimized an assay to assess the suppressive capability of CD8(+) T cells directly ex vivo, eliminating the potential for altering their function through activation or expansion prior to assay setup, and thereby enhancing the assay's sensitivity by avoiding non-specific inhibition. With this method, the ability of ex vivo CD8(+) T cells to control HIV-1 replication in vitro can be quantified over several orders of magnitude. Specifically, our assay can be used to better define the antiviral function of CD8(+) T cells induced by vaccination, and can provide insight into their ability to control viral replication if HIV infection occurs post-vaccination.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Proteína do Núcleo p24 do HIV/antagonistas & inibidores , Infecções por HIV/imunologia , HIV-1/imunologia , Imunoensaio , Replicação Viral/imunologia , Adulto , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/patologia , Linfócitos T CD8-Positivos/virologia , Feminino , Genes Reporter , Proteína do Núcleo p24 do HIV/biossíntese , Infecções por HIV/patologia , Infecções por HIV/virologia , Humanos , Luciferases/genética , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...