Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Med (Lond) ; 4(1): 49, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491176

RESUMO

BACKGROUND: Digital health technologies show promise for improving the measurement of Parkinson's disease in clinical research and trials. However, it is not clear whether digital measures demonstrate enhanced sensitivity to disease progression compared to traditional measurement approaches. METHODS: To this end, we develop a wearable sensor-based digital algorithm for deriving features of upper and lower-body bradykinesia and evaluate the sensitivity of digital measures to 1-year longitudinal progression using data from the WATCH-PD study, a multicenter, observational digital assessment study in participants with early, untreated Parkinson's disease. In total, 82 early, untreated Parkinson's disease participants and 50 age-matched controls were recruited and took part in a variety of motor tasks over the course of a 12-month period while wearing body-worn inertial sensors. We establish clinical validity of sensor-based digital measures by investigating convergent validity with appropriate clinical constructs, known groups validity by distinguishing patients from healthy volunteers, and test-retest reliability by comparing measurements between visits. RESULTS: We demonstrate clinical validity of the digital measures, and importantly, superior sensitivity of digital measures for distinguishing 1-year longitudinal change in early-stage PD relative to corresponding clinical constructs. CONCLUSIONS: Our results demonstrate the potential of digital health technologies to enhance sensitivity to disease progression relative to existing measurement standards and may constitute the basis for use as drug development tools in clinical research.


Parkinson's disease can impact a person's ability to move, which can result in slow or rigid movements. Wearable sensors can be used to measure these symptoms and could be particularly useful to detect changes early in the course of the disease when symptoms may be subtle. We developed a wearable sensor-based method to measure movement in people with early Parkinson's disease that uses wrist and foot-worn sensors. Our results demonstrate that our sensor-based measurements can accurately quantify progressive changes in movement function. Such measurements may allow researchers to more accurately evaluate how well treatments designed to slow the course of Parkinson's disease are working in the future.

2.
Sensors (Basel) ; 22(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081058

RESUMO

Stair climb power (SCP) is a clinical measure of leg muscular function assessed in-clinic via the Stair Climb Power Test (SCPT). This method is subject to human error and cannot provide continuous remote monitoring. Continuous monitoring using wearable sensors may provide a more comprehensive assessment of lower-limb muscular function. In this work, we propose an algorithm to classify stair climbing periods and estimate SCP from a lower-back worn accelerometer, which strongly agrees with the clinical standard (r = 0.92, p < 0.001; ICC = 0.90, [0.82, 0.94]). Data were collected in-lab from healthy adults (n = 65) performing the four-step SCPT and a walking assessment while instrumented (accelerometer + gyroscope), which allowed us to investigate tradeoffs between sensor modalities. Using two classifiers, we were able to identify periods of stair ascent with >89% accuracy [sensitivity = >0.89, specificity = >0.90] using two ensemble machine learning algorithms, trained on accelerometer signal features. Minimal changes in model performances were observed using the gyroscope alone (±0−6% accuracy) versus the accelerometer model. While we observed a slight increase in accuracy when combining gyroscope and accelerometer (about +3−6% accuracy), this is tolerable to preserve battery life in the at-home environment. This work is impactful as it shows potential for an accelerometer-based at-home assessment of SCP.


Assuntos
Teste de Esforço , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Humanos , Extremidade Inferior , Músculo Esquelético , Caminhada
3.
JMIR Mhealth Uhealth ; 10(4): e36762, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35353039

RESUMO

Wearable inertial sensors are providing enhanced insight into patient mobility and health. Significant research efforts have focused on wearable algorithm design and deployment in both research and clinical settings; however, open-source, general-purpose software tools for processing various activities of daily living are relatively scarce. Furthermore, few studies include code for replication or off-the-shelf software packages. In this work, we introduce SciKit Digital Health (SKDH), a Python software package (Python Software Foundation) containing various algorithms for deriving clinical features of gait, sit to stand, physical activity, and sleep, wrapped in an easily extensible framework. SKDH combines data ingestion, preprocessing, and data analysis methods geared toward modern data science workflows and streamlines the generation of digital endpoints in "good practice" environments by combining all the necessary data processing steps in a single pipeline. Our package simplifies the construction of new data processing pipelines and promotes reproducibility by following a convention over configuration approach, standardizing most settings on physiologically reasonable defaults in healthy adult populations or those with mild impairment. SKDH is open source, as well as free to use and extend under a permissive Massachusetts Institute of Technology license, and is available from GitHub (PfizerRD/scikit-digital-health), the Python Package Index, and the conda-forge channel of Anaconda.


Assuntos
Atividades Cotidianas , Dispositivos Eletrônicos Vestíveis , Adulto , Algoritmos , Humanos , Reprodutibilidade dos Testes , Software
4.
NPJ Digit Med ; 3: 127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33083562

RESUMO

Technological advances in multimodal wearable and connected devices have enabled the measurement of human movement and physiology in naturalistic settings. The ability to collect continuous activity monitoring data with digital devices in real-world environments has opened unprecedented opportunity to establish clinical digital phenotypes across diseases. Many traditional assessments of physical function utilized in clinical trials are limited because they are episodic, therefore, cannot capture the day-to-day temporal fluctuations and longitudinal changes in activity that individuals experience. In order to understand the sensitivity of gait speed as a potential endpoint for clinical trials, we investigated the use of digital devices during traditional clinical assessments and in real-world environments in a group of healthy younger (n = 33, 18-40 years) and older (n = 32, 65-85 years) adults. We observed good agreement between gait speed estimated using a lumbar-mounted accelerometer and gold standard system during the performance of traditional gait assessment task in-lab, and saw discrepancies between in-lab and at-home gait speed. We found that gait speed estimated in-lab, with or without digital devices, failed to differentiate between the age groups, whereas gait speed derived during at-home monitoring was able to distinguish the age groups. Furthermore, we found that only three days of at-home monitoring was sufficient to reliably estimate gait speed in our population, and still capture age-related group differences. Our results suggest that gait speed derived from activities during daily life using data from wearable devices may have the potential to transform clinical trials by non-invasively and unobtrusively providing a more objective and naturalistic measure of functional ability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...