Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(4): 412-415, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38084050

RESUMO

Core-shell MOF@COF hybrids were synthesized via subsequent modification of MOF UiO-66-NH2 with 1,3,5-triformylphloroglucinol (TFP) and 2,3,5,6-tetraaminobenzoquinone (TABQ). The hybrids exhibited significant surface area (236 m2 g-1) and outstanding electrochemical performance (103 F g-1 at 0.5 A g-1), surpassing both COFs and MOFs, thereby showcasing the potential of on-surface condensation reactions for developing high-performance energy storage devices.

2.
Adv Mater ; 36(4): e2305783, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37643306

RESUMO

Stimuli-responsive molecular systems support within permanently porous materials offer the opportunity to host dynamic functions in multifunctional smart materials. However, the construction of highly porous frameworks featuring external-stimuli responsiveness, for example by light excitation, is still in its infancy. Here a general strategy is presented to construct spiropyran-functionalized highly porous switchable aromatic frameworks by modular and high-precision anchoring of molecular hooks and an innovative in situ solid-state grafting approach. Three spiropyran-grafted frameworks bearing distinct functional groups exhibiting various stimuli-responsiveness are generated by two-step post-solid-state synthesis of a parent indole-based material. The quantitative transformation and preservation of high porosity are demonstrated by spectroscopic and gas adsorption techniques. For the first time, a highly efficient strategy is provided to construct multi-stimuli-responsive, yet structurally robust, spiropyran materials with high pore capacity which is proved essential for the reversible and quantitative isomerization in the bulk as demonstrated by solid-state NMR spectroscopy. The overall strategy allows to construct dynamic materials that undergoes reversible transformation of spiropyran to zwitterionic merocyanine, by chemical and physical stimulation, showing potential for pH active control, responsive gas uptake and release, contaminant removal, and water harvesting.

3.
Nanoscale ; 15(44): 17765-17775, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37882733

RESUMO

The presence of oxygen-containing functional groups on the basal plane and at the edges endows graphene oxide (GO) with an insulating nature, which makes it rather unsuitable for electronic applications. Fortunately, the reduction process makes it possible to restore the sp2 conjugation. Among various protocols, chemical reduction is appealing because of its compatibility with large-scale production. Nevertheless, despite the vast number of reported chemical protocols, their comparative assessment has not yet been the subject of an in-depth investigation, rendering the establishment of a structure-performance relationship impossible. We report a systematic study on the chemical reduction of GO by exploring different reducing agents (hydrazine hydrate, sodium borohydride, ascorbic acid (AA), and sodium dithionite) and reaction times (2 or 12 hours) in order to boost the performance of chemically reduced GO (CrGO) in electronics and in electrochemical applications. In this work, we provide evidence that the optimal reduction conditions should vary depending on the chosen application, whether it is for electrical or electrochemical purposes. CrGO exhibiting a good electrical conductivity (>1800 S m-1) can be obtained by using AA (12 hours of reaction), Na2S2O4 and N2H4 (independent of the reaction time). Conversely, CrGO displaying a superior electrochemical performance (specific capacitance of 211 F g-1, and capacitance retention >99.5% after 2000 cycles) can be obtained by using NaBH4 (12 hours of reaction). Finally, the compatibility of the different CrGOs with wearable and flexible electronics is also demonstrated using skin irritation tests. The strategy described represents a significant advancement towards the development of environmentally friendly CrGOs with ad hoc properties for advanced applications in electronics and energy storage.

4.
Angew Chem Int Ed Engl ; 62(32): e202305239, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37335007

RESUMO

The unique electrochemical properties of polyoxometalates (POMs) render them ideal components for the fabrication of next-generation high-performance energy storage systems. However, their practical applications have been hindered by their high solubility in common electrolytes. This problem can be overcome by the effective hybridization of POMs with other materials. Here we present the design and synthesis of two novel polyoxometalate-covalent organic frameworks (POCOF) via one-pot solvothermal strategy between an amino-functionalized Anderson-type POM and a trialdehyde-based building unit. We show that structural and functional complexity can be enriched by adding hydroxyl groups in the 2,4,6 position to the benzene-1,3,5-tricarbaldehyde allowing to exploit for the first time in POCOFs the keto-enol tautomerization as additional feature to impart greater chemical stability to the COFs and enhanced properties leading to large specific surface area (347 m2 /g) and superior electrochemical performance of the POCOF-1 electrodes, when compared with POCOF-2 electrodes that possess only imine-type linkage and with pristine POM electrodes. Specifically, POCOF-1 electrodes display remarkable specific, areal, and volumetric capacitance (125 F/g, 248 mF/cm2 and 41.9 mF/cm3 , respectively) at a current density of 0.5 A/g, a maximum energy density (56.2 Wh/kg), a maximum power density (3.7 kW/kg) and an outstanding cyclability (90 % capacitance retention after 5000 cycles).

5.
Nanoscale ; 13(23): 10490-10499, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34081070

RESUMO

Pollution of wastewater with heavy metal-ions represents one of the most severe environmental problems associated with societal development. To overcome this issue, the design of new, highly efficient systems capable of removing such toxic species, hence to purify water, is of paramount importance for public health and environmental protection. In this work, novel sorption hybrid materials were developed to enable high-performance adsorption of heavy metal ions. Towards this end, graphene oxide (GO) exhibiting various C/O ratios has been functionalized with ad hoc receptors, i.e. terpyridine ligands. The maximum adsorption capacity of highly oxidized/terpyridine hybrids towards Ni(ii), Zn(ii) and Co(ii) was achieved at pH = 6 and 25 °C reaching values of 462, 421 and 336 mg g-1, respectively, being the highest reported in the literature for pristine GO and GO-based sorbents. Moreover, the uptake experiments showed that heavy metal ion adsorption on GO-Tpy and GOh-Tpy is strongly dependent on pH in the range from 2 to 10, as a result of the modulation of interactions at the supramolecular level. Moreover, the ionic strength was found to be independent of heavy metal ion adsorption on GO-Tpy and GOh-Tpy. Under ambient conditions, adsorption capacity values increase with the degree of oxidation of GO because dipolar oxygen units can both interact with heavy-metal ions via dipole-dipole and/or ionic interactions and enable bonding of more covalently anchored terpyridine units. Both adsorption isotherms and kinetics studies revealed that the uptake of the heavy metal ions occurs at a monolayer coverage, mostly controlled by the strong surface complexation with the oxygen of GO and nitrogen-containing groups of terpyridine. Furthermore, selectivity of the hybrid was confirmed by selective sorption of the above heavy metal ions from mixtures involving alkali (Na(i), K(i)) and alkaline Earth (Mg(ii), Ca(ii)) metal ions due to the chelating properties of the terpyridine subunits, as demonstrated with municipal drinking (tap) water samples. Our findings provide unambiguous evidence for the potential of chemical tailoring of GO-based materials with N-heterocyclic ligands as sorbent materials for highly efficient wastewater purification.

6.
Nanoscale ; 12(36): 18733-18741, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32970083

RESUMO

Supercapacitor energy storage devices recently garnered considerable attention due to their cost-effectiveness, eco-friendly nature, high power density, moderate energy density, and long-term cycling stability. Such figures of merit render supercapacitors unique energy sources to power portable electronic devices. Among various energy storage materials, graphene-related materials have established themselves as ideal electrodes for the development of elite supercapacitors because of their excellent electrical conductivity, high surface area, outstanding mechanical properties combined with the possibility to tailor various physical and chemical properties via chemical functionalization. Increasing the surface area is a powerful strategy to improve the performance of supercapacitors. Here, modified polyhedral oligosilsesquioxane (POSS) is used to improve the electrochemical performance of reduced graphene oxide (rGO) through the enhancement of porosity and the extension of interlayer space between the sheets allowing efficient electrolyte transport. rGO-POSS hybrids exhibited a high specific capacitance of 174 F g-1, power density reaching 2.25 W cm-3, and high energy density of 41.4 mW h cm-3 endowed by the introduction of POSS spacers. Moreover, these electrode materials display excellent durability reaching >98% retention after 5000 cycles.

7.
J Am Chem Soc ; 141(1): 482-487, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30517783

RESUMO

Toward the introduction of fast faradaic pseudocapacitive behavior and the increase of the specific capacitance of carbon-based electrodes, we covalently functionalized graphene oxide with a redox active thiourea-formaldehyde polymer, yielding a multifunctional hybrid system. The multiscale physical and chemical characterization of the novel 3-dimensional hybrid revealed high material porosity with high specific surface area (402 m2 g-1) and homogeneous element distribution. The presence of multiple functional groups comprising sulfur, nitrogen, and oxygen provide additional contribution of Faradaic redox reaction in supercapacity performance, leading to a high effective electrochemical pseudocapacitance. Significantly, our graphene-based 3-dimensional thiourea-formaldehyde hybrid exhibited specific capacitance as high as 400 F g-1, areal capacitance of 160 mF cm-2, and an energy density of 11.1 mWh cm-3 at scan rate of 1 mV s-1 with great capacitance retention (100%) after 5000 cycles at scan rate of 100 mV s-1.

8.
Chem Soc Rev ; 47(13): 4860-4908, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29938255

RESUMO

During the last decade, two-dimensional materials (2DMs) have attracted great attention due to their unique chemical and physical properties, which make them appealing platforms for diverse applications in opto-electronic devices, energy generation and storage, and sensing. Among their various extraordinary properties, 2DMs possess high surface area-to-volume ratios and ultra-high surface sensitivity to the environment, which are key characteristics for applications in chemical sensing. Furthermore, 2DMs' superior electrical and optical properties, combined with their excellent mechanical characteristics such as robustness and flexibility, make these materials ideal components for the fabrication of a new generation of high-performance chemical sensors. Depending on the specific device, 2DMs can be tailored to interact with various chemical species at the non-covalent level, making them powerful platforms for fabricating devices exhibiting a high sensitivity towards detection of various analytes including gases, ions and small biomolecules. Here, we will review the most enlightening recent advances in the field of chemical sensors based on atomically-thin 2DMs and we will discuss the opportunities and the challenges towards the realization of novel hybrid materials and sensing devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...