Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 104(41): 16323-8, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17913893

RESUMO

Exposure to low Ca(2+) and/or Mg(2+) is tolerated by cardiac myocytes, astrocytes, and neurons, but restoration to normal divalent cation levels paradoxically causes Ca(2+) overload and cell death. This phenomenon has been called the "Ca(2+) paradox" of ischemia-reperfusion. The mechanism by which a decrease in extracellular Ca(2+) and Mg(2+) is "detected" and triggers subsequent cell death is unknown. Transient periods of brain ischemia are characterized by substantial decreases in extracellular Ca(2+) and Mg(2+) that mimic the initial condition of the Ca(2+) paradox. In CA1 hippocampal neurons, lowering extracellular divalents stimulates a nonselective cation current. We show that this current resembles TRPM7 currents in several ways. Both (i) respond to transient decreases in extracellular divalents with inward currents and cell excitation, (ii) demonstrate outward rectification that depends on the presence of extracellular divalents, (iii) are inhibited by physiological concentrations of intracellular Mg(2+), (iv) are enhanced by intracellular phosphatidylinositol 4,5-bisphosphate (PIP(2)), and (v) can be inhibited by Galphaq-linked G protein-coupled receptors linked to phospholipase C beta1-induced hydrolysis of PIP(2). Furthermore, suppression of TRPM7 expression in hippocampal neurons strongly depressed the inward currents evoked by lowering extracellular divalents. Finally, we show that activation of TRPM7 channels by lowering divalents significantly contributes to cell death. Together, the results demonstrate that TRPM7 contributes to the mechanism by which hippocampal neurons "detect" reductions in extracellular divalents and provide a means by which TRPM7 contributes to neuronal death during transient brain ischemia.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Canais de Cátion TRPM/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Cátions Bivalentes/metabolismo , Morte Celular/fisiologia , Células Cultivadas , Hipocampo/citologia , Humanos , Camundongos , Interferência de RNA , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Canais de Cátion TRPM/antagonistas & inibidores , Canais de Cátion TRPM/genética , Transfecção
2.
J Neurochem ; 96(6): 1509-18, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16417568

RESUMO

Protein kinase C (PKC) phosphorylates the NR1 and NR2A subunits of NMDARs at consensus sites located within their intracellular C-terminal tails. However, the functional consequences of these biochemical events are not well understood. In HEK293 cells expressing NR1/NR2A, activation of endogenous PKC by 4beta-phorbol 12-myristate 13-acetate (PMA) increased NMDAR desensitization as evidenced by a reduced steady-state current without any change in peak. The effects of PMA on NMDAR-mediated responses were prevented by specific PKC inhibitors and were not mimicked by an inactive enantiomer of PMA. The effects of PMA were preserved despite mutagenesis of the major PKC sites on the NR1 subunit (S889A, S890A, S896A and S897A) or removal of the entire NR1 C-terminal tail (NR1(stop838)). When co-expressing NR1(stop838)/NR2A the effects of PMA could only be observed with agonist concentrations sufficient to induce glycine-insensitive desensitization. Moreover, the effects of PMA were observed in receptors composed of NR1/NR2A and NR1/NR2B, but not NR1/NR2C, a subunit combination in which desensitization is absent. The NR2 subunit dependence suggested that the actions of PMA might require specific PKC sites previously identified within NR2A. However, a C-terminal truncated form of NR2A (NR2A(stop905)) remained responsive to PMA. We conclude that activation of PKC increases NMDAR glycine-insensitive desensitization independently of previously identified sites located within the NR1 C-terminus and distal segment of the NR2A C-terminus.


Assuntos
Química Encefálica/fisiologia , Proteína Quinase C/metabolismo , Subunidades Proteicas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Linhagem Celular , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Fosforilação/efeitos dos fármacos , Proteína Quinase C/farmacologia , Estrutura Terciária de Proteína/fisiologia , Subunidades Proteicas/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/genética , Sinapses/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...