Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 534
Filtrar
1.
Brain Spine ; 4: 102832, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756859

RESUMO

Introduction: Both intracranial pressure (ICP) and cerebral arterial blood volume (CaBV) have a pulsatile character related to the cardiac cycle. The evolution of the shape of ICP pulses under increasing ICP or decreasing intracranial compliance is well documented. Nevertheless, the exact origin of the alterations in the ICP morphology remains unclear. Research question: Does ICP pulse waveform become similar to non-invasively estimated CaBV pulse during ICP plateau waves. Material and methods: A total of 15 plateau waves recorded in 15 traumatic brain injured patients were analyzed. CaBV pulse waveforms were calculated using global cerebral blood flow model from transcranial Doppler cerebral blood flow velocity (CBFV) signals. The difference index (DI) was used to quantify the similarity between ICP and CaBV waveforms. DI was calculated as the sum of absolute sample-by-sample differences between ICP and CaBV waveforms, representing the area between the pulses. Results: ICP increased (19.4 mm Hg [Q1-Q3: 18.2-23.4 mm Hg] vs. 42.7 mm Hg [Q1-Q3: 36.5-45.1 mm Hg], p < 0.001) while CBFV decreased (44.2 cm/s [Q1-Q3: 34.8-69.5 cm/s] vs. 32.9 cm/s [Q1-Q3: 24.7-68.2 cm/s], p = 0.002) during plateau waves. DI was smaller during the plateau waves (20.4 [Q1-Q3: 15.74-23.0]) compared to the baselines (26.3 [Q1-Q3: 24.2-34.7], p < 0.001). Discussion and conclusion: The area between corresponding ICP and CaBV pulse waveforms decreased during the plateau waves which suggests they became similar in shape. CaBV may play a significant role in determining the shape of ICP pulses during the plateau waves and might be a driving force in formulating ICP elevation.

2.
J Clin Monit Comput ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573368

RESUMO

The time constant of the cerebral arterial bed (τ) represents an estimation of the  transit time of flow from the point of insonation at the level of the middle cerebral artery to the arteriolar-capillary boundary, during a cardiac cycle. This study assessed differences in τ among healthy volunteers across different age groups. Simultaneous recordings of transcranial Doppler cerebral blood flow velocity (CBFV) and arterial blood pressure (ABP) were performed on two groups: young volunteers (below 30 years of age), and older volunteers (above 40 years of age). τ was estimated using mathematical transformation of ABP and CBFV pulse waveforms. 77 healthy volunteers [52 in the young group, and 25 in the old group] were included. Pulse amplitude of ABP was higher [16.7 (14.6-19.4) mmHg] in older volunteers as compared to younger ones [12.5 (10.9-14.4) mm Hg; p < 0.001]. CBFV was lower in older volunteers [59 (50-66) cm/s] as compared to younger ones [72 (63-78) cm/s p < 0.001]. τ was longer in the younger volunteers [217 (168-237) ms] as compared to the older volunteers [183 (149-211) ms; p = 0.004]. τ significantly decreased with age (rS = - 0.27; p = 0.018). τ is potentially an integrative marker of the changes occurring in cerebral vasculature, as it encompasses the interplay between changes in compliance and resistance that occur with age.

3.
Brain Spine ; 4: 102795, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38601774

RESUMO

Introduction: PRx can be used as surrogate measure of Cerebral Autoregulation (CA) in traumatic brain injury (TBI) patients. PRx can provide means for individualising cerebral perfusion pressure (CPP) targets, such as CPPopt. However, a recent Delphi consensus of clinicians concluded that consensus could not be reached on the accuracy, reliability, and validation of any current CA assessment method. Research question: We aimed to quantify the short-term uncertainty of PRx time-trends and to relate this to other physiological measurements. Material and methods: Intracranial pressure (ICP), arterial blood pressure (ABP), end-tidal CO2 (EtCO2) high-resolution recordings of 911 TBI patients were processed with ICM + software. Hourly values of metrics that describe the variability within modalities derived from ABP, ICP and EtCO2, were calculated for the first 24h of neuromonitoring. Generalized additive models were used to describe the time trend of the variability in PRx. Linear correlations were studied for describing the relationship between PRx variability and the other physiological modalities. Results: The time profile of variability of PRx decreases over the first 12h and was higher for average PRx ∼0. Increased variability of PRx was not linearly linked with average ABP, ICP, or CPP. For coherence between slow waves of ABP and ICP >0.7, the variability in PRx decreased (R = -0.47, p < 0.001). Discussion and conclusion: PRx is a highly variable parameter. PRx short-term dispersion was not related to average ICP, ABP or CPP. The determinants of uncertainty of PRx should be investigated to improve reliability of individualised CA assessment in TBI patients.

4.
J Cereb Blood Flow Metab ; : 271678X241249276, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688529

RESUMO

Cerebral Autoregulation (CA) is an important physiological mechanism stabilizing cerebral blood flow (CBF) in response to changes in cerebral perfusion pressure (CPP). By maintaining an adequate, relatively constant supply of blood flow, CA plays a critical role in brain function. Quantifying CA under different physiological and pathological states is crucial for understanding its implications. This knowledge may serve as a foundation for informed clinical decision-making, particularly in cases where CA may become impaired. The quantification of CA functionality typically involves constructing models that capture the relationship between CPP (or arterial blood pressure) and experimental measures of CBF. Besides describing normal CA function, these models provide a means to detect possible deviations from the latter. In this context, a recent white paper from the Cerebrovascular Research Network focused on Transfer Function Analysis (TFA), which obtains frequency domain estimates of dynamic CA. In the present paper, we consider the use of time-domain techniques as an alternative approach. Due to their increased flexibility, time-domain methods enable the mitigation of measurement/physiological noise and the incorporation of nonlinearities and time variations in CA dynamics. Here, we provide practical recommendations and guidelines to support researchers and clinicians in effectively utilizing these techniques to study CA.

5.
Brain Spine ; 4: 102760, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510604

RESUMO

Introduction: Continuous monitoring of the pressure reactivity index (PRx) provides an estimation of dynamic cerebral autoregulation (CA) at the bedside in traumatic brain injury (TBI) patients. Visualising the time-trend of PRx with a risk bar chart in ICM + software at the bedside allows for better real-time interpretability of the autoregulation status. When PRx>0.3 is sustained for long periods, typically of at least half an hour, the bar shows a pattern called "red solid line" (RSL). RSL was previously described to precede refractory intracranial hypertension and brain death. Research question: We aimed to describe pathophysiological changes in measured signals/parameters during RSL. Material and methods: Observation of time-trends of PRx, intracranial pressure, cerebral perfusion pressure, brain oxygenation and compensatory reserve of TBI patients with RSL. Results: Three pathophysiological patterns were identified: RSL precedes intracranial hypertension, RSL is preceded by intracranial hypertension, or RSL is preceded by brain hypoperfusion. In all cases, RSL was followed by death and the RSL onset was between 1 h and 1 day before the terminal event. Discussion and conclusion: RSL precedes death in intensive care and could represent a marker for terminal clinical deterioration in TBI patients. These findings warrant further investigations in larger cohorts to characterise pathophysiological mechanisms underlying the RSL pattern and whether RSL has a significant relationship with outcome after TBI.

6.
Brain Spine ; 4: 102772, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510619

RESUMO

Introduction: Electrical-equivalence mathematical models that integrate vascular and cerebrospinal fluid (CSF) compartments perform well in simulations of dynamic cerebrovascular variations and their transient effects on intracranial pressure (ICP). However, ICP changes due to sustained vascular diameter changes have not been comprehensively examined. We hypothesise that changes in cerebrovascular resistance (CVR) alter the resistance of the bulk flow of interstitial fluid (ISF). Research question: We hypothesise that changes in CVR alter the resistance of the bulk flow of ISF, thus allowing simulations of ICP in response to sustained vascular diameter changes. Material and methods: A lumped parameter model with vascular and CSF compartments was constructed and converted into an electrical analogue. The flow and pressure responses to transient hyperaemic response test (THRT) and CSF infusion test (IT) were observed. Arterial blood pressure (ABP) was manipulated to simulate ICP plateau waves. The experiments were repeated with a modified model that included the ISF compartment. Results: Simulations of the THRT produced identical cerebral blood flow (CBF) responses. ICP generated by the new model reacted in a similar manner as the original model during ITs. Plateau pressure reached during ITs was however higher in the ISF model. Only the latter was successful in simulating the onset of ICP plateau waves in response to selective blood pressure manipulations. Discussion and conclusion: Our simulations highlighted the importance of including the ISF compartment, which provides mechanism explaining sustained haemodynamic influences on ICP. Consideration of such interactions enables accurate simulations of the cerebrovascular effects on ICP.

7.
Brain Spine ; 4: 102758, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510634

RESUMO

Introduction: A fixed CSF pressure (CSFp) of 25 cmH2O (18 mmHg) has been utilised to date to define and classify pseudotumour cerebri syndrome (PTCS). Furthermore, ICP monitoring, and CSF infusion tests have not been frequently performed in this group of patients. Research question: We aimed to report typical, unusual and unstable patterns of ICP in patients with PTCS. Material and methods: We reviewed the recordings of CSF infusion tests and overnight ICP monitoring of patients with suspected or confirmed IIH between January 2003-December 2020.We excluded all patients with a shunt in situ and selected recordings that represented unstable patterns of ICP changes in PTCS. Results: 463 CSF infusion tests and 26 ICP monitorings of PTCS patients had been performed in this timeframe. We divided results of observed pattern into two group: those with known venous sinus measurements (Group A) and those without (Group B). Observed recordings formed a total of 5 and 4 different patterns respectively, based on the behaviour of ICP and slow waves at rest, overnight, and during infusion as well as in relationship to the clinical presentation of each patient. Discussion and conclusion: Accurate monitoring of ICP in PTCS is quintessential. Full understanding of each element of its pathophysiology and their interaction would be essential and include quantification of the CSF pressure not only as a number, but also with consideration of its dynamic contents. Cerebral venous pressure measurements and/or monitoring may be useful. Consideration of the presence or absence of papilloedema in the context of disturbed CSF dynamics could reveal further diagnostic and therapeutic insights.

8.
J Clin Monit Comput ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38310592

RESUMO

Current guidelines suggest a target of partial pressure of carbon dioxide (PaCO2) of 32-35 mmHg (mild hypocapnia) as tier 2 for the management of intracranial hypertension. However, the effects of mild hyperventilation on cerebrovascular dynamics are not completely elucidated. The aim of this study is to evaluate the changes of intracranial pressure (ICP), cerebral autoregulation (measured through pressure reactivity index, PRx), and regional cerebral oxygenation (rSO2) parameters before and after induction of mild hyperventilation. Single center, observational study including patients with acute brain injury (ABI) admitted to the intensive care unit undergoing multimodal neuromonitoring and requiring titration of PaCO2 values to mild hypocapnia as tier 2 for the management of intracranial hypertension. Twenty-five patients were included in this study (40% female), median age 64.7 years (Interquartile Range, IQR = 45.9-73.2). Median Glasgow Coma Scale was 6 (IQR = 3-11). After mild hyperventilation, PaCO2 values decreased (from 42 (39-44) to 34 (32-34) mmHg, p < 0.0001), ICP and PRx significantly decreased (from 25.4 (24.1-26.4) to 17.5 (16-21.2) mmHg, p < 0.0001, and from 0.32 (0.1-0.52) to 0.12 (-0.03-0.23), p < 0.0001). rSO2 was statistically but not clinically significantly reduced (from 60% (56-64) to 59% (54-61), p < 0.0001), but the arterial component of rSO2 (ΔO2Hbi, changes in concentration of oxygenated hemoglobin of the total rSO2) decreased from 3.83 (3-6.2) µM.cm to 1.6 (0.5-3.1) µM.cm, p = 0.0001. Mild hyperventilation can reduce ICP and improve cerebral autoregulation, with minimal clinical effects on cerebral oxygenation. However, the arterial component of rSO2 was importantly reduced. Multimodal neuromonitoring is essential when titrating PaCO2 values for ICP management.

9.
Neurocrit Care ; 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351299

RESUMO

BACKGROUND: Optimization of ventilatory settings is challenging for patients in the neurointensive care unit, requiring a balance between precise gas exchange control, lung protection, and managing hemodynamic effects of positive pressure ventilation. Although recruitment maneuvers (RMs) may enhance oxygenation, they could also exert profound undesirable systemic impacts. METHODS: The single-center, prospective study investigated the effects of RMs (up-titration of positive end-expiratory pressure) on multimodal neuromonitoring in patients with acute brain injury. Our primary focus was on intracranial pressure and secondarily on cerebral perfusion pressure (CPP) and other neurological parameters: cerebral autoregulation [pressure reactivity index (PRx)] and regional cerebral oxygenation (rSO2). We also assessed blood pressure and right ventricular (RV) function evaluated using tricuspid annular plane systolic excursion. Results are expressed as the difference (Δ) from baseline values obtained after completing the RMs. RESULTS: Thirty-two patients were enrolled in the study. RMs resulted in increased intracranial pressure (Δ = 4.8 mm Hg) and reduced CPP (ΔCPP = -12.8 mm Hg) and mean arterial pressure (difference in mean arterial pressure = -5.2 mm Hg) (all p < 0.001). Cerebral autoregulation worsened (ΔPRx = 0.31 a.u.; p < 0.001). Despite higher systemic oxygenation (difference in partial pressure of O2 = 4 mm Hg; p = 0.001) and unchanged carbon dioxide levels, rSO2 marginally decreased (ΔrSO2 = -0.5%; p = 0.031), with a significant drop in arterial content and increase in the venous content. RV systolic function decreased (difference in tricuspid annular plane systolic excursion = -0.1 cm; p < 0.001) with a tendency toward increased RV basal diameter (p = 0.06). Grouping patients according to ΔCPP or ΔPRx revealed that those with poorer tolerance to RMs had higher CPP (p = 0.040) and a larger RV basal diameter (p = 0.034) at baseline. CONCLUSIONS: In patients with acute brain injury, RMs appear to have adverse effects on cerebral hemodynamics. These findings might be partially explained by RM's impact on RV function. Further advanced echocardiography monitoring is required to prove this hypothesis.

10.
J Clin Monit Comput ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38238636

RESUMO

Poor postoperative outcomes may be associated with cerebral ischaemia or hyperaemia, caused by episodes of arterial blood pressure (ABP) being outside the range of cerebral autoregulation (CA). Monitoring CA using COx (correlation between slow changes in mean ABP and regional cerebral O2 saturation-rSO2) could allow to individualise the management of ABP to preserve CA. We aimed to explore a continuous automated assessment of ABPOPT (ABP where CA is best preserved) and ABP at the lower limit of autoregulation (LLA) in elective neurosurgery patients. Retrospective analysis of prospectively collected data of 85 patients [median age 60 (IQR 51-68)] undergoing elective neurosurgery. ABPBASELINE was the mean of 3 pre-operative non-invasive measurements. ABP and rSO2 waveforms were processed to estimate COx-derived ABPOPT and LLA trend-lines. We assessed: availability (number of patients where ABPOPT/LLA were available); time required to achieve first values; differences between ABPOPT/LLA and ABP. ABPOPT and LLA availability was 86 and 89%. Median (IQR) time to achieve the first value was 97 (80-155) and 93 (78-122) min for ABPOPT and LLA respectively. Median ABPOPT [75 (69-84)] was lower than ABPBASELINE [90 (84-95)] (p < 0.001, Mann-U test). Patients spent 72 (56-86) % of recorded time with ABP above or below ABPOPT ± 5 mmHg. ABPOPT and ABP time trends and variability were not related to each other within patients. 37.6% of patients had at least 1 hypotensive insult (ABP < LLA) during the monitoring time. It seems possible to assess individualised automated ABP targets during elective neurosurgery.

11.
J Cereb Blood Flow Metab ; : 271678X241228512, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295872

RESUMO

Time constant of the cerebral arterial bed (τ) is a transcranial Doppler (TCD) based metric that is expected to quantify the transit time of red blood cells from the insonation point to the arteriole-capillary boundary during a cardiac cycle. This study aims to assess the potential of τ as an early predictor of delayed cerebral ischemia (DCI). Consecutive patients (56 ± 15 years) treated for aneurysmal subarachnoid haemorrhage were included in the study. τ was assessed through a modelling approach that involved simultaneous recordings of arterial blood pressure and cerebral blood flow velocity (CBFV) from TCD's first recordings. 71 patients were included. 17 patients experienced DCI. τ was significantly shorter in patients who later developed DCI: 187 ± 64 ms vs. 249 ± 184 ms; p = 0.040 with moderate effect size (rG = 0.24). Logistic regression showed that there was a significant association between increased CBFV, shortened τ, and the development of DCI (χ2 = 11.54; p = 0.003) with AUC for the model 0.75. Patients who had both shortened τ and increased CBFV were 20 times more likely to develop DCI (OR = 20.4 (2.2-187.7)). Our results suggest that early alterations in τ are associated with DCI after aSAH. The highest performance of the model including both CBFV and τ may suggest the importance of both macrovascular and microvascular changes assessment.

12.
Crit Care ; 28(1): 23, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229147

RESUMO

BACKGROUND: The use of the passive leg raising (PLR) is limited in acute brain injury (ABI) patients with increased intracranial pressure (ICP) since the postural change of the head may impact on ICP and cerebral autoregulation. However, the PLR use may prevent a positive daily fluid balance, which had been recently associated to worse neurological outcomes. We therefore studied early and delayed effects of PLR on the cerebral autoregulation of patients recovering from ABI. MATERIALS AND METHODS: This is a Prospective, observational, single-center study conducted in critically ill patients admitted with stable ABI and receiving invasive ICP monitoring, multimodal neuromonitoring and continuous hemodynamic monitoring. The fluid challenge consisted of 500 mL of crystalloid over 10 min; fluid responsiveness was defined as cardiac index increase ≥ 10%. Comparisons between different variables at baseline and after PLR were made by paired Wilcoxon signed-rank test. The correlation coefficients between hemodynamic and neuromonitoring variables were assessed using Spearman's rank test. RESULTS: We studied 23 patients [12 patients (52.2%) were fluid responders]. The PLR significantly increased ICP [from 13.7 (8.3-16.4) to 15.4 (12.0-19.2) mmHg; p < 0.001], cerebral perfusion pressure (CPP) [from 51.1 (47.4-55.6) to 56.4 (49.6-61.5) mmHg; p < 0.001] and the pressure reactivity index (PRx) [from 0.12 (0.01-0.24) to 0.43 (0.34-0.46) mmHg; p < 0.001]. Regarding Near Infrared Spectroscopy (NIRS)-derived parameters, PLR significantly increased the arterial component of regional cerebral oxygen saturation (O2Hbi) [from 1.8 (0.8-3.7) to 4.3 (2.5-5.6) µM cm; p < 0.001], the deoxygenated hemoglobin (HHbi) [from 1.6 (0.2-2.9) to 2.7 (1.4-4.0) µM cm; p = 0.007] and total hemoglobin (cHbi) [from 3.6 (1.9-5.3) to 7.8 (5.2-10.3): p < 0.001]. In all the patients who had altered autoregulation after PLR, these changes persisted ten minutes afterwards. After the PLR, we observed a significant correlation between MAP and CPP and PRx. CONCLUSIONS: In ABI patient with stable ICP, PLR test increased ICP, but mostly within safety values and thresholds. Despite this, cerebral autoregulation was importantly impaired, and this persisted up to 10 min after the end of the maneuvre. Our results discourage the use of PLR test in ABI even when ICP is stable.


Assuntos
Lesões Encefálicas , Pressão Intracraniana , Humanos , Pressão Intracraniana/fisiologia , Perna (Membro) , Encéfalo , Homeostase/fisiologia , Hemoglobinas , Circulação Cerebrovascular/fisiologia
13.
J Neurosurg ; : 1-11, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976508

RESUMO

OBJECTIVE: Different paradigms for neurocritical care of traumatic brain injury (TBI) have emerged in conjunction with advanced neuromonitoring technologies and derived metrics. The priority for optimizing these metrics is not currently clear. The goal of this study was to determine whether achieving cerebral perfusion pressure (CPPopt) also improves other metrics like brain oxygenation and brain blood flow. METHODS: The authors performed a retrospective analysis of high-frequency data from patients with TBI who were treated at a single center and who had partial pressure of brain oxygen (PbtO2) measurements and/or brain blood flow measurements, while also undergoing intracranial pressure (ICP) monitoring. CPPopt was not calculated or targeted during patient care, but was retrospectively computed, as was the difference between the observed CPP and CPPopt. RESULTS: A total of 22 patients with ICP, PbtO2, and/or brain blood flow monitoring were included in the analysis, and 245.7 days of measurements obtained every second were analyzed including 6,748,866 PbtO2 measurements, 3,296,405 blood flow measurements, and 10,264,770 ICP measurements. The data obtained every second were averaged by minute for analysis. In summative data, PbtO2 measurements peaked near CPPopt and were not improved above CPPopt. Blood flow measurements remained stable near CPPopt, decreased below it, and increased when CPP exceeded CPPopt. ICP decreased linearly with CPP without a specific relationship with CPPopt. In an inverse analysis, the percentage of CPP values at CPPopt, although significantly higher on the favorable side of contemporary treatment thresholds of PbtO2, ICP, and blood flow, was not found to be strongly correlated with the mean values of the physiological measurements obtained every minute (r = 0.27, r = 0.11, and r = 0.47 for ICP, PbtO2, and blood flow, respectively; p < 0.0001). CONCLUSIONS: Although CPPopt was not targeted in the patients in this study, CPPopt was a physiologically significant value based on concurrent measurements of PbtO2 and blood flow. In summative data, achievement of CPPopt was associated with optimized PbtO2 and blood flow. Conversely, the correlation between achievement of CPPopt and the mean measurement value was not strong, strengthening the significance of CPPopt. In individual patients, achieving CPPopt is not always associated with optimal PbtO2 or blood flow. Further research should explore these relationships in treatment paradigms that specifically target CPPopt. These data do not support the premise that targeting and achieving CPPopt obviates the need for concurrent PbtO2 and blood flow monitoring. Although these data suggest that targeting CPPopt may be an appropriate initial treatment strategy, they do not provide evidence that CPPopt should be targeted with highest priority.

14.
Crit Care ; 27(1): 447, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978548

RESUMO

BACKGROUND: Midline shift and mass lesions may occur with traumatic brain injury (TBI) and are associated with higher mortality and morbidity. The shape of intracranial pressure (ICP) pulse waveform reflects the state of cerebrospinal pressure-volume compensation which may be disturbed by brain injury. We aimed to investigate the link between ICP pulse shape and pathological computed tomography (CT) features. METHODS: ICP recordings and CT scans from 130 TBI patients from the CENTER-TBI high-resolution sub-study were analyzed retrospectively. Midline shift, lesion volume, Marshall and Rotterdam scores were assessed in the first CT scan after admission and compared with indices derived from the first 24 h of ICP recording: mean ICP, pulse amplitude of ICP (AmpICP) and pulse shape index (PSI). A neural network model was applied to automatically group ICP pulses into four classes ranging from 1 (normal) to 4 (pathological), with PSI calculated as the weighted sum of class numbers. The relationship between each metric and CT measures was assessed using Mann-Whitney U test (groups with midline shift > 5 mm or lesions > 25 cm3 present/absent) and the Spearman correlation coefficient. Performance of ICP-derived metrics in identifying patients with pathological CT findings was assessed using the area under the receiver operating characteristic curve (AUC). RESULTS: PSI was significantly higher in patients with mass lesions (with lesions: 2.4 [1.9-3.1] vs. 1.8 [1.1-2.3] in those without; p << 0.001) and those with midline shift (2.5 [1.9-3.4] vs. 1.8 [1.2-2.4]; p < 0.001), whereas mean ICP and AmpICP were comparable. PSI was significantly correlated with the extent of midline shift, total lesion volume and the Marshall and Rotterdam scores. PSI showed AUCs > 0.7 in classification of patients as presenting pathological CT features compared to AUCs ≤ 0.6 for mean ICP and AmpICP. CONCLUSIONS: ICP pulse shape reflects the reduction in cerebrospinal compensatory reserve related to space-occupying lesions despite comparable mean ICP and AmpICP levels. Future validation of PSI is necessary to explore its association with volume imbalance in the intracranial space and a potential complementary role to the existing monitoring strategies.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Estudos Retrospectivos , Pressão Intracraniana , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Tomografia Computadorizada por Raios X
15.
Acta Neurochir (Wien) ; 165(12): 4045-4054, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37889335

RESUMO

BACKGROUND: Normal pressure hydrocephalus (NPH) is often associated with altered cerebral blood flow. Recent research with the use of the ultrasonic method suggests specific changes in the shape of cardiac-related cerebral arterial blood volume (CaBV) pulses in NPH patients. Our study aims to provide a quantitative analysis of the shape of CaBV pulses, estimated based on transcranial Doppler ultrasonography (TCD) in NPH patients and healthy individuals. METHODS: The CaBV pulses were estimated using TCD cerebral blood flow velocity signals recorded from probable NPH adults and age-matched healthy individuals at rest. The shape of the CaBV pulses was compared to a triangular shape with 27 similarity parameters calculated for every reliable CaBV pulse and compared between patients and volunteers. The diagnostic accuracy of the most prominent parameter for NPH classification was evaluated using the area under the receiver operating characteristic curve (AUC). RESULTS: The similarity parameters were calculated for 31 probable NPH patients (age: 59 years (IQR: 47, 67 years), 14 females) and 23 healthy volunteers (age: 54 years (IQR: 43, 61 years), 18 females). Eighteen of 27 parameters were different between healthy individuals and NPH patients (p < 0.05). The most prominent differences were found for the ascending slope of the CaBV pulse with the AUC equal to 0.87 (95% confidence interval: 0.77, 0.97, p < 0.001). CONCLUSIONS: The findings suggest that in NPH, the ascending slope of the CaBV pulse had a slower rise, was more like a straight line, and generally was less convex than in volunteers. Prospective research is required to verify the clinical utility of these findings.


Assuntos
Hidrocefalia de Pressão Normal , Hidrocefalia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Frequência Cardíaca , Circulação Cerebrovascular/fisiologia , Artérias , Ultrassonografia Doppler Transcraniana , Velocidade do Fluxo Sanguíneo/fisiologia
16.
Physiol Meas ; 44(10)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37793420

RESUMO

Continuous monitoring of mean intracranial pressure (ICP) has been an essential part of neurocritical care for more than half a century. Cerebrospinal pressure-volume compensation, i.e. the ability of the cerebrospinal system to buffer changes in volume without substantial increases in ICP, is considered an important factor in preventing adverse effects on the patient's condition that are associated with ICP elevation. However, existing assessment methods are poorly suited to the management of brain injured patients as they require external manipulation of intracranial volume. In the 1980s, studies suggested that spontaneous short-term variations in the ICP signal over a single cardiac cycle, called the ICP pulse waveform, may provide information on cerebrospinal compensatory reserve. In this review we discuss the approaches that have been proposed so far to derive this information, from pulse amplitude estimation and spectral techniques to most recent advances in morphological analysis based on artificial intelligence solutions. Each method is presented with focus on its clinical significance and the potential for application in standard clinical practice. Finally, we highlight the missing links that need to be addressed in future studies in order for ICP pulse waveform analysis to achieve widespread use in the neurocritical care setting.


Assuntos
Inteligência Artificial , Pressão Intracraniana , Humanos , Pressão Sanguínea , Encéfalo , Frequência Cardíaca
17.
J Anesth Analg Crit Care ; 3(1): 31, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670387

RESUMO

BACKGROUND: Invasive intracranial pressure (ICP) monitoring is a standard practice in severe brain injury cases, where it allows to derive cerebral perfusion pressure (CPP); ICP-tracing can also provide additional information about intracranial dynamics, forecast episodes of intracranial hypertension and set targets for a tailored therapy to prevent secondary brain injury. Nevertheless, controversies about the advantages of an ICP clinical management are still debated. FINDINGS: This article reviews recent research on ICP to improve the understanding of the topic and uncover the hidden information in this signal that may be useful in clinical practice. Parameters derived from time-domain as well as frequency domain analysis include compensatory reserve, autoregulation estimation, pulse waveform analysis, and behavior of ICP in time. The possibility to predict the outcome and apply a tailored therapy using a personalised perfusion pressure target is also described. CONCLUSIONS: ICP is a crucial signal to monitor in severely brain injured patients; a bedside computer can empower standard monitoring giving new metrics that may aid in clinical management, establish a personalized therapy, and help to predict the outcome. Continuous collaboration between engineers and clinicians and application of new technologies to healthcare, is vital to improve the accuracy of current metrics and progress towards better care with individualized dynamic targets.

18.
Crit Care Sci ; 35(2): 196-202, 2023.
Artigo em Inglês, Português | MEDLINE | ID: mdl-37712809

RESUMO

OBJECTIVE: To evaluate the association between different intensive care units and levels of brain monitoring with outcomes in acute brain injury. METHODS: Patients with traumatic brain injury and subarachnoid hemorrhage admitted to intensive care units were included. Neurocritical care unit management was compared to general intensive care unit management. Patients managed with multimodal brain monitoring and optimal cerebral perfusion pressure were compared with general management patients. A good outcome was defined as a Glasgow outcome scale score of 4 or 5. RESULTS: Among 389 patients, 237 were admitted to the neurocritical care unit, and 152 were admitted to the general intensive care unit. Neurocritical care unit management patients had a lower risk of poor outcome (OR = 0.228). A subgroup of 69 patients with multimodal brain monitoring (G1) was compared with the remaining patients (G2). In the G1 and G2 groups, 59% versus 23% of patients, respectively, had a good outcome at intensive care unit discharge; 64% versus 31% had a good outcome at 28 days; 76% versus 50% had a good outcome at 3 months (p < 0.001); and 77% versus 58% had a good outcome at 6 months (p = 0.005). When outcomes were adjusted by SAPS II severity score, using good outcome as the dependent variable, the results were as follows: for G1 compared to G2, the OR was 4.607 at intensive care unit discharge (p < 0.001), 4.22 at 28 days (p = 0.001), 3.250 at 3 months (p = 0.001) and 2.529 at 6 months (p = 0.006). Patients with optimal cerebral perfusion pressure management (n = 127) had a better outcome at all points of evaluation. Mortality for those patients was significantly lower at 28 days (p = 0.001), 3 months (p < 0.001) and 6 months (p = 0.001). CONCLUSION: Multimodal brain monitoring with autoregulation and neurocritical care unit management were associated with better outcomes and should be considered after severe acute brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Lesões Encefálicas/terapia , Encéfalo , Lesões Encefálicas Traumáticas/diagnóstico , Unidades de Terapia Intensiva , Escala de Resultado de Glasgow
20.
World Neurosurg ; 178: e6-e12, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37544601

RESUMO

Idiopathic normal pressure hydrocephalus (iNPH) refers to a complex brain disorder characterized by ventricular enlargement and the classic Hakim's triad of gait and balance difficulties, urinary incontinence, and cognitive impairment. It predominantly affects older patients in the absence of an identified cause. As the elderly population continues to increase, iNPH becomes a growing concern in the complex spectrum of neuro-geriatric care, with significant socio-economic implications. However, unlike other well-structured management approaches for neurodegenerative disorders, the management of iNPH remains largely uncodified, leading to suboptimal care in many cases. In this article, we highlighted the challenges of current practice and identify key points for an optimal structuration of care for iNPH. Adopting a global approach to iNPH could facilitate a progressive shift in mindset, moving away from solely aiming to cure an isolated neurological disease with uncertain outcomes to providing comprehensive care that focuses on improving the daily life of frail patients with complex neurodegenerative burdens, using tailored goals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...