Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731803

RESUMO

This study explores the effects of normobaric hypoxia and intermittent hypoxic training (IHT) on the physiological condition of the cardiac muscle in swimmers. Hypoxia has been reported to elicit both beneficial and adverse changes in the cardiovascular system, but its impact on the myocardium during acute exercise and altitude/hypoxic training remains less understood. We aimed to determine how a single bout of intense interval exercise and a four-week period of high-intensity endurance training under normobaric hypoxia affect cardiac marker activity in swimmers. Sixteen young male swimmers were divided into two groups: one undergoing training in hypoxia and the other in normoxia. Cardiac markers, including troponin I and T (cTnI and cTnT), heart-type fatty acid-binding protein (H-FABP), creatine kinase-MB isoenzyme (CK-MB), and myoglobin (Mb), were analyzed to assess the myocardium's response. We found no significant differences in the physiological response of the cardiac muscle to intense physical exertion between hypoxia and normoxia. Four weeks of IHT did not alter the resting levels of cTnT, cTnI, and H-FABP, but it resulted in a noteworthy decrease in the resting concentration of CK-MB, suggesting enhanced cardiac muscle adaptation to exercise. In contrast, a reduction in resting Mb levels was observed in the control group training in normoxia. These findings suggest that IHT at moderate altitudes does not adversely affect cardiac muscle condition and may support cardiac muscle adaptation, affirming the safety and efficacy of IHT as a training method for athletes.


Assuntos
Atletas , Biomarcadores , Hipóxia , Humanos , Masculino , Hipóxia/metabolismo , Projetos Piloto , Natação/fisiologia , Adulto Jovem , Miocárdio/metabolismo , Mioglobina/metabolismo , Troponina I/metabolismo , Proteína 3 Ligante de Ácido Graxo/metabolismo , Adolescente , Proteínas de Ligação a Ácido Graxo/metabolismo , Resistência Física/fisiologia , Creatina Quinase Forma MB/sangue , Creatina Quinase Forma MB/metabolismo , Adaptação Fisiológica , Altitude
2.
Biol Sport ; 41(2): 37-45, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38524828

RESUMO

Extracellular sphingosine-1-phosphate (S1P) emerged as an important regulator of muscle function. We previously found that plasma S1P concentration is elevated in response to acute exercise and training. Interestingly, hypoxia, which is commonly utilized in training programs, induces a similar effect. Therefore, the aim of the current study was to determine the effect of normobaric hypoxia on exercise-induced changes in blood sphingolipid metabolism. Fifteen male competitive cyclists performed a graded cycling exercise until exhaustion (GE) and a simulated 30 km individual time trial (TT) in either normoxic or hypoxic (FiO2 = 16.5%) conditions. Blood samples were taken before the exercise, following its cessation, and after 30 min of recovery. We found that TT increased dihydrosphingosine-1-phosphate (dhS1P) concentration in plasma (both HDL- and albumin-bound) and blood cells, as well as the rate of dhS1P release from erythrocytes, regardless of oxygen availability. Plasma concentration of S1P was, however, reduced during the recovery phase, and this trend was augmented by hypoxia. On the other hand, GE in normoxia induced a selective increase in HDL-bound S1P. This effect disappeared when the exercise was performed in hypoxia, and it was associated with reduced S1P level in platelets and erythrocytes. We conclude that submaximal exercise elevates total plasma dhS1P concentration via increased availability of dihydrosphingosine resulting in enhanced dhS1P synthesis and release by blood cells. Maximal exercise, on the other hand, induces a selective increase in HDL-bound S1P, which is a consequence of mechanisms not related to blood cells. We also conclude that hypoxia reduces post-exercise plasma S1P concentration.

3.
Sports Med ; 54(1): 1-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37906426

RESUMO

There are countless types of portable heart rate monitoring medical devices used variously by leisure-time exercisers, professional athletes, and chronically ill patients. Almost all the currently used heart rate monitors are capable of detecting arrhythmias, but this feature is not widely known or used among their millions of consumers. The aims of this paper were as follows: (1) to analyze the currently available sports heart rate monitors and assess their advantages and disadvantage in terms of heart rate and rhythm monitoring in endurance athletes; (2) to discuss what types of currently available commercial heart rate monitors are most convenient/adjustable to the needs of different consumers (including occasionally physically active adults and cardiac patients), bearing in mind the potential health risks, especially heart rhythm disturbances connected with endurance training; (3) to suggest a set of "optimal" design features for next-generation smart wearable devices based on the consensus opinion of an expert panel of athletes, coaches, and sports medicine doctors. Ninety-two experts aged 20 years and over, involved in endurance sports on a daily basis, were invited to participate in consensus-building discussions, including 56 long-distance runners, 18 cyclists, nine coaches, and nine physicians (sports medicine specialists, cardiologists, and family medicine doctors). The overall consensus endorsed by these experts indicates that the "optimal" sports heart rate monitor should be a one-piece device of the smartwatch type (with two or more electrodes), with integrated smartphone features, and able to collect and continually transmit data without exhibiting artifacts. It should continuously record at least a single-lead electrocardiography, send an alert after an unexpected fall, be of reasonable weight, come at an affordable price, and be user friendly.


Regular endurance training is among the key factors positively influencing human health. However, there are also many reports describing sudden cardiac fatalities and other serious health problems related to strenuous exercise. Millions of professional and leisure-time athletes worldwide use various digital heart rate monitors to keep track of their training volume, intensity, energy expenditure, running or cycling speed. Nevertheless, currently available heart rate monitors are not tailored to all the specific needs of their users. Moreover, they are not constructed to keep better track of important health functions and thereby improve the safety of endurance training. This paper presents a set of consensus statements developed by a panel of expert heart rate monitor users (endurance athletes, their physicians, and coaches) from three countries. In the panel's view, the "optimal" heart rate monitor should improve users' safety during exercise by providing more reliable medical data informative of potential health risks. A specific set of features of the proposed "optimal" digital heart rate monitor was identified and accepted by the panel of experts. Based on the consensus statements and the available literature, the authors propose next-generation portable devices for use by professional and ambitious leisure-time endurance athletes or even by cardiac patients involved in exercise training (a design called the "Gajda Watch" after the surname of two of the panel organizers/paper authors). One of the biggest challenges is dealing with artifacts and avoiding false information. This consensus document may also be helpful for manufacturers of heart rate monitors seeking new solutions for the sports and medical community.


Assuntos
Esportes , Adulto , Humanos , Esportes/fisiologia , Atletas , Arritmias Cardíacas/diagnóstico , Monitorização Fisiológica , Eletrocardiografia
4.
Front Physiol ; 14: 1279827, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089475

RESUMO

Purpose: The effectiveness of altitude training on haematological adaptations is largely dependent on iron metabolism. Hepcidin and erythroferrone (ERFE) are key iron-regulating hormones, yet their response to altitude training is poorly understood. The aim of this study was to analyze changes in hepcidin and ERFE under the influence of 3 weeks of the Live High-Train Low (LH-TL) method. Methods: Twenty male trained cyclists completed a 3-week training program under normoxic conditions (NORM) or with passive exposure to normobaric hypoxia (LH-TL; FiO2 = 16.5%, ∼2000 m; 11-12 h/day). Hepcidin, ERFE, hypoxia inducible factor-2 (HIF-2), ferroportin (Fpn), erythropoietin (EPO), serum iron (Fe) and hematological variables were assessed at baseline (S1), then immediately after (S2) and 3 days after (S3) intervention. Results: In the LH-TL group, hepcidin decreased by 13.0% (p < 0.001) in S2 and remained at a reduced level in S3. ERFE decreased by 28.7% (p < 0.05) in S2 and returned to baseline in S3. HIF-2α decreased gradually, being lower by 25.3% (p < 0.05) in S3. Fpn decreased between S1 and S2 by 18.9% (p < 0.01) and remained lower during S3 (p < 0.01). In the NORM group, in turn, hepcidin levels increased gradually, being higher by 73.9% (p < 0.05) in S3 compared to S1. No statistically significant differences in EPO were observed in both groups. Conclusion: Three weeks of LH-TL suppresses resting hepcidin and ERFE levels in endurance athletes. We found no association between hepcidin and ERFE after LH-TL. Probably, ERFE is not the only factor that suppresses hepcidin expression in response to moderate hypoxia, especially in later stages of hepcidin downregulation. With the cessation of hypoxia, favorable conditions for increasing the availability of iron cease.

5.
J Hum Kinet ; 87: 77-93, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37559758

RESUMO

The aim of the study was to examine whether a single bout of exercise to volitional exhaustion, performed under moderate normobaric hypoxia (H), would affect psychomotor performance (PP) in differently trained athletes. For this purpose, ten strength-trained (S) athletes, ten endurance-trained (E) athletes and ten healthy men leading a sedentary lifestyle as a control (C) group performed voluntarily two graded exercise tests until volitional exhaustion (EVE) under normoxia (N) and H (FiO2 = 14.7%). We measured the peripheral level of the brain derived neurotrophic factor (BDNF), choice reaction time (CRT) and the number of correct reactions (NCR) as indices of PP. Psychomotor tests were performed at rest, immediately after the EVE and 3 minutes after the EVE. Venous blood samples were collected at rest, immediately after cessation of each EVE, and 1 h after each EVE. The results showed that the EVE significantly (p < 0.05) impaired CRT under N and H, and NCR under H only in the E group. The higher WRmax in the E compared to the S and C groups was associated with a significant (p < 0.005) increase in adrenaline (A) and noradrenaline (NA). There were no significant differences between conditions (N vs. H) in the BDNF at rest and after exercise. The EVE impaired cognitive function only in the E group; higher involvement of the sympathetic nervous system, A and NA may also play a role in this phenomenon. Therefore, it can be concluded that exposure to H did not have a negative impact on CRT or NCR. Moreover, BDNF did not improve cognitive function.

6.
Nutrients ; 16(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38201906

RESUMO

The aim of this study was to evaluate the effects of D-aspartic acid (DAA) supplementation during a simulated altitude protocol on the hormonal and hematological responses in athletes. We hypothesized that DAA supplementation would contribute to an increase in the luteinizing hormone (LH), free, and testosterone and a greater increase in hematological variables. Sixteen male boxers participated; they were randomly assigned to an experimental group (DAA) or a control group (C) and underwent 14 days of supplementation, 6 g/day of DAA. Both DAA and C participants were exposed to normobaric hypoxia (FiO2 = 15.5%; 2500 m) for 10-12 h a day over a period of 11 days. The results showed that DAA had no significant effect on resting, LH, or the testosterone/cortisol ratio during the training camp. Hypoxic exposure significantly (p < 0.05) increased red blood cell and reticulocyte counts as well as hemoglobin and hematocrit concentrations in both groups, but DAA had no significant effect on these changes. In conclusion, we found that DAA supplementation at a dose of 6 g/day for 14 days does not affect the testosterone, cortisol, or hematological responses of athletes during.


Assuntos
Ácido D-Aspártico , Testosterona , Humanos , Masculino , Ácido Aspártico , Suplementos Nutricionais , Hidrocortisona , Hipóxia , Hormônio Luteinizante
7.
Artigo em Inglês | MEDLINE | ID: mdl-35564640

RESUMO

The aim of this study was to analyze the effects of the "live high, train low" method (LH−TL) and intermittent hypoxic training (IHT) on testosterone (T) and cortisol (C) levels in cyclists. Thirty cyclists participated in the experiment. The LH−TL group (n = 10) was exposed to normobaric hypoxia (FiO2 = 16.3%) for 11−12 h a day and trained in normoxia for 3 weeks. In the IHT group (n = 10), participants followed the IHT routine three times a week for 3 weeks in normobaric hypoxia (FiO2 = 16.3%). The control group (N; n = 10) followed the same training protocol in normoxia. The LH−TL training was found to significantly increase (p < 0.05) T levels and the testosterone/cortisol (T/C) ratio during the experiment. The area under the curve (AUC) calculated for T levels over 4 weeks was significantly (p < 0.05) higher in the LH−TL group, by 25.6%, compared to the N group. The results also indicated a significant correlation (r = 0.53; p < 0.05) between AUC for T levels over 4 weeks and ∆ values of hemoglobin (HGB) in the LH−TL group. Overall, the findings show that LH−TL training at a moderate simulated altitude contributes to an increase in T levels and T/C ratio in athletes, which is a beneficial change stimulating anabolic processes and erythropoiesis.


Assuntos
Hidrocortisona , Consumo de Oxigênio , Altitude , Humanos , Hipóxia , Testosterona
8.
Oxid Med Cell Longev ; 2022: 4048543, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251471

RESUMO

Hypoxia is a recognized inducer of oxidative stress during prolonged physical activity. Nevertheless, previous studies have not systematically examined the effects of normoxia and hypoxia during acute physical exercise. The study is aimed at evaluating the relationship between enzymatic and nonenzymatic antioxidant barrier, total antioxidant/oxidant status, oxidative and nitrosative damage, inflammation, and lysosomal function in different acute exercise protocols under normoxia and hypoxia. Fifteen competitive athletes were recruited for the study. They were subjected to two types of acute cycling exercise with different intensities and durations: graded exercise until exhaustion (GE) and simulated 30 km individual time trial (TT). Both exercise protocols were performed under normoxic and hypoxic (FiO2 = 16.5%) conditions. The number of subjects was determined based on our previous experiment, assuming the test power = 0.8 and α = 0.05. We demonstrated enhanced enzymatic antioxidant systems during hypoxic exercise (GE: ↑ catalase (CAT), ↑ superoxide dismutase; TT: ↑ CAT) with a concomitant decrease in plasma reduced glutathione. In athletes exercising in hypoxia, redox status was shifted in favor of oxidation reactions (GE: ↑ total oxidant status, ↓ redox ratio), leading to increased oxidation/nitration of proteins (GE: ↑ advanced oxidation protein products (AOPP), ↑ ischemia-modified albumin, ↑ 3-nitrotyrosine, ↑ S-nitrosothiols; TT: ↑ AOPP) and lipids (GE: ↑ malondialdehyde). Concentrations of nitric oxide and its metabolites (peroxynitrite) were significantly higher in the plasma of hypoxic exercisers with an associated increase in inflammatory mediators (GE: ↑ myeloperoxidase, ↑ tumor necrosis factor-alpha) and lysosomal exoglycosidase activity (GE: ↑ N-acetyl-ß-hexosaminidase, ↑ ß-glucuronidase). Our study indicates that even a single intensive exercise session disrupts the antioxidant barrier and leads to increased oxidative and nitrosative damage at the systemic level. High-intensity exercise until exhaustion (GE) alters redox homeostasis more than the less intense exercise (TT, near the anaerobic threshold) of longer duration (20.2 ± 1.9 min vs. 61.1 ± 5.4 min-normoxia; 18.0 ± 1.9 min vs. 63.7 ± 3.0 min-hypoxia), while hypoxia significantly exacerbates oxidative stress, inflammation, and lysosomal dysfunction in athletic subjects.


Assuntos
Exercício Físico/fisiologia , Homeostase/fisiologia , Hipóxia/sangue , Lisossomos/metabolismo , Estresse Nitrosativo/fisiologia , Transdução de Sinais/fisiologia , Adolescente , Adulto , Produtos da Oxidação Avançada de Proteínas/sangue , Antioxidantes/metabolismo , Atletas , Biomarcadores/sangue , Catalase/sangue , Humanos , Inflamação/sangue , Masculino , Malondialdeído/sangue , Oxirredução , Albumina Sérica Humana , Superóxido Dismutase/sangue , Adulto Jovem
9.
Nutrients ; 14(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057416

RESUMO

The aim of this study was to evaluate the effects of sodium phosphate (SP) supplementation on aerobic capacity in hypoxia. Twenty-four trained male cyclists received SP (50 mg·kg-1 of FFM/day) or placebo for six days in a randomized, crossover study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion in hypoxia (FiO2 = 16%). Additionally, the levels of 2,3-diphosphoglycerate (2,3-DPG), hypoxia-inducible factor 1 alpha (HIF-1α), inorganic phosphate (Pi), calcium (Ca), parathyroid hormone (PTH) and acid-base balance were determined. The results showed that phosphate loading significantly increased the Pi level by 9.0%, whereas 2,3-DPG levels, hemoglobin oxygen affinity, buffering capacity and myocardial efficiency remained unchanged. The aerobic capacity in hypoxia was not improved following SP. Additionally, our data revealed high inter-individual variability in response to SP. Therefore, the participants were grouped as Responders and Non-Responders. In the Responders, a significant increase in aerobic performance in the range of 3-5% was observed. In conclusion, SP supplementation is not an ergogenic aid for aerobic capacity in hypoxia. However, in certain individuals, some benefits can be expected, but mainly in athletes with less training-induced central and/or peripheral adaptation.


Assuntos
Ciclismo/fisiologia , Suplementos Nutricionais , Tolerância ao Exercício/efeitos dos fármacos , Hipóxia/fisiopatologia , Substâncias para Melhoria do Desempenho/administração & dosagem , Fosfatos/administração & dosagem , Adulto , Desempenho Atlético/fisiologia , Estudos Cross-Over , Teste de Esforço , Humanos , Hipóxia/terapia , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Fosfatos/sangue , Resistência Física/efeitos dos fármacos
10.
Nutrients ; 13(10)2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34684557

RESUMO

The main aim of this study was to evaluate the effects of six days of tri-sodium phosphate (SP) supplementation on the cardiorespiratory system and gross efficiency (GE) during exercise under hypoxia in cyclists. Twenty trained male cyclists received SP (50 mg·kg-1 of fat-free mass/day) or placebo for six days in a randomized, cross-over study, with a three-week washout period between supplementation phases. Before and after each supplementation phase, the subjects performed an incremental exercise test to exhaustion under normobaric hypoxia (FiO2 = 16%, ~2500 m). It was observed that short-term SP supplementation led to a decrease in heart rate, an increase in stroke volume, and an improvement in oxygen pulse (VO2/HR) during low and moderate-intensity exercise under hypoxia. These changes were accompanied by an increase in the serum inorganic phosphate level by 8.7% (p < 0.05). No significant changes were observed in serum calcium levels. GE at a given workload did not change significantly after SP supplementation. These results indicated that SP promotes improvements in the efficiency of the cardiorespiratory system during exercise in a hypoxic environment. Thus, SP supplementation may be beneficial for endurance exercise in hypoxia.


Assuntos
Ciclismo/fisiologia , Aptidão Cardiorrespiratória/fisiologia , Suplementos Nutricionais , Hipóxia/fisiopatologia , Fosfatos/farmacologia , Adulto , Estudos Cross-Over , Método Duplo-Cego , Teste de Esforço , Frequência Cardíaca/efeitos dos fármacos , Humanos , Hipóxia/terapia , Masculino , Consumo de Oxigênio/efeitos dos fármacos , Fosfatos/sangue , Resistência Física/efeitos dos fármacos , Volume Sistólico/efeitos dos fármacos
11.
Nutrients ; 13(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34684480

RESUMO

This study aimed to analyze the effects of live high-train low method (LH-TL) and intermittent hypoxic training (IHT) with a controlled mixed diet on lipid profile in cyclists. Thirty trained male cyclists at a national level with at least six years of training experience participated in the study. The LH-TL group was exposed to hypoxia (FiO2 = 16.5%) for 11-12 h a day and trained under normoxia for 3 weeks. In the IHT group, participants followed the IHT routine three times a week under hypoxia (FiO2 = 16.5%) at lactate threshold intensity. The control group (N) lived and trained under normoxia. The results showed that the 3-week LH-TL method significantly improved all lipid profile variables. The LH-TL group showed a significant increase in HDL-C by 9.0% and a decrease in total cholesterol (TC) by 9.2%, LDL-C by 18.2%, and triglycerides (TG) by 27.6%. There were no significant changes in lipid profiles in the IHT and N groups. ∆TG and ∆TC were significantly higher in the LH-TL group compared to the N group. In conclusion, hypoxic conditions combined with a mixed diet can induce beneficial changes in lipid profile even in highly trained athletes. The effectiveness of the hypoxic stimulus is closely related to the hypoxic training method.


Assuntos
Ciclismo , Dieta , Hipóxia/sangue , Lipídeos/sangue , Aterosclerose/sangue , Composição Corporal , Peso Corporal , Humanos , Masculino , Adulto Jovem
12.
Front Physiol ; 12: 670977, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34211402

RESUMO

Red blood cell 2,3-diphosphoglycerate (2,3-DPG) is one of the factors of rightward-shifted oxygen dissociation curves and decrease of Hb-O2 affinity. The reduction of Hb-O2 affinity is beneficial to O2 unloading at the tissue level. In the current literature, there are no studies about the changes in 2,3-DPG level following acute exercise in moderate hypoxia in athletes. For this reason, the aim of this study was to analyze the effect of prolonged intense exercise under normoxic and hypoxic conditions on 2,3-DPG level in cyclists. Fourteen male trained cyclists performed a simulation of a 30 km time trial (TT) in normoxia and normobaric hypoxia (FiO2 = 16.5%, ~2,000 m). During the TT, the following variables were measured: power, blood oxygen saturation (SpO2), and heart rate (HR). Before and immediately after exercise, the blood level of 2,3-DPG and acid-base equilibrium were determined. The results showed that the mean SpO2 during TT in hypoxia was 8% lower than in normoxia. The reduction of SpO2 in hypoxia resulted in a decrease of average power by 9.6% (p < 0.001) and an increase in the 30 km TT completion time by 3.8% (p < 0.01) compared to normoxia. The exercise in hypoxia caused a significant (p < 0.001) decrease in 2,3-DPG level by 17.6%. After exercise in normoxia, a downward trend of 2,3-DPG level was also observed, but this effect was not statistically significant. The analysis also revealed that changes of acid-base balance were significantly larger (p < 0.05) after exercise in hypoxia than in normoxia. In conclusion, intense exercise in hypoxic conditions leads to a decrease in 2,3-DPG concentration, primarily due to exercise-induced acidosis.

13.
Artigo em Inglês | MEDLINE | ID: mdl-33804352

RESUMO

This comprehensive case analysis aimed to identify the features enabling a runner to achieve championship in 24-h ultramarathon (UM) races. A 36-year-old, multiple medalist of the World Championships in 24-h running, was assessed before, one and 10 days after a 24-h run. Results of his extensive laboratory and cardiological diagnostics with transthoracic echocardiography (TTE) and a one-time cardiopulmonary exercise test (CPET) were analyzed. After 12 h of running (approximately 130 km), the athlete experienced an increasing pain in the right knee. His baseline clinical data were within the normal range. High physical efficiency in CPET (VO2max 63 mL/kg/min) was similar to the average achieved by other ultramarathoners who had significantly worse results. Thus, we also performed genetic tests and assessed his psychological profile, body composition, and markers of physical and mental stress (serotonin, cortisol, epinephrine, prolactin, testosterone, and luteinizing hormone). The athlete had a mtDNA haplogroup H (HV0a1 subgroup, belonging to the HV cluster), characteristic of athletes with the highest endurance. Psychological studies have shown high and very high intensity of the properties of individual scales of the tools used mental resilience (62-100% depending on the scale), openness to experience (10th sten), coherence (10th sten), positive perfectionism (100%) and overall hope for success score (10th sten). The athlete himself considers the commitment and mental support of his team to be a significant factor of his success. Body composition assessment (%fat 13.9) and the level of stress markers were unremarkable. The tested athlete showed a number of features of the champions of ultramarathon runs, such as: inborn predispositions, mental traits, level of training, and resistance to pain. However, none of these features are reserved exclusively for "champions". Team support's participation cannot be underestimated. The factors that guarantee the success of this elite 24-h UM runner go far beyond physiological and psychological explanations. Further studies are needed to identify individual elements of the putative "mosaic theory of being a champion".


Assuntos
Resistência Física , Corrida , Adulto , Atletas , Humanos , Extremidade Inferior , Testosterona
14.
Postepy Biochem ; 66(3): 205-212, 2020 09 30.
Artigo em Polonês | MEDLINE | ID: mdl-33315318

RESUMO

It has been found that in brain areas responsible for controlling appetite brain-derived neurotrophic factor (BDNF) and TrkB receptor expression are also present. In addition to involvement in neurogenesis, neuroprotection and synaptic plasticity, BDNF has anorexigenic activity. Decreasing of BDNF levels in the brain causes uncontrolled food intake, in turn, administration of BDNF to the central nervous system (CNS) leads to weight loss in animals. BDNF may participate with other factors such as leptin, insulin, cholecystokinin or corticotropin in the regulation of food intake. In addition, BDNF can affect glucose metabolism. It was found that peripheral BDNF level is lower in anorexia compared to healthy people. Moreover, BDNF levels tend to return to basal value when body weight normalizes. The mutation in the BDNF gene could also be important in the pathogenesis of obesity, although data on the blood concentration of this neurotrophin in obese are ambiguous.


Assuntos
Regulação do Apetite , Fator Neurotrófico Derivado do Encéfalo , Animais , Peso Corporal , Fator Neurotrófico Derivado do Encéfalo/genética , Humanos , Obesidade/genética , Receptor trkB/metabolismo
15.
BMC Sports Sci Med Rehabil ; 12(1): 70, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33292555

RESUMO

BACKGROUND: The maximal lactate steady state (MLSS) is defined as the highest workload that can be maintained for a longer period of time without continued blood lactate (LA) accumulation. MLSS is one of the physiological indicators of aerobic performance. However, determination of MLSS requires the performance of a series of constant-intensity tests during multiple laboratory visits. Therefore, attempts are made to determine MLSS indirectly by means of anaerobic threshold (AT) evaluated during a single graded exercise test (GXT) until volitional exhaustion. The aim of our study was to verify whether AT determined by maximal deviation (Dmax), modified maximal deviation (ModDmax), baseline LA concentration + 1 mmol/l (+ 1 mmol/l), individual anaerobic threshold (IAT), onset of blood lactate accumulation (OBLA4mmol/l) and V-slope methods based on GXT with 3-min stages provide valid estimates of MLSS in elite cyclists. METHODS: Twelve elite male cyclists (71.3 ± 3.6 ml/kg/min) completed GXT (the increase by 40 W every 3 min) to establish the AT (by Dmax, ModDmax, + 1 mmol/l, IAT, OBLA4mmol/l and V-slope methods). Next, a series of 30-min constant-load tests to determine MLSS was performed. Agreement between the MLSS and workload (WR) at AT was evaluated using the Bland-Altman method. RESULTS: The analysis revealed a very high (rs > 0.90, p < 0.001) correlation between WRMLSS and WRDmax and WRIAT. The other AT methods were highly (rs > 0.70) correlated with MLSS except for OBLA4mmol/l (rs = 0.67). The Bland-Altman analysis revealed the highest agreement with MLSS for the Dmax, IAT and + 1 mmol/l methods. Mean difference between WRMLSS and WRDmax, WRIAT and WR+1mmol/l was 1.7 ± 3.9 W, 4.3 ± 7.9 W and 6.7 ± 17.2 W, respectively. Furthermore, the WRDmax and WRIAT had the lowest limits of agreement with the WRMLSS. The ModDmax and OBLA4mmol/l methods overestimated MLSS by 31.7 ± 18.5 W and 43.3 ± 17.8 W, respectively. The V-slope method underestimated MLSS by 36.2 ± 10.9 W. CONCLUSIONS: The AT determined by Dmax and IAT methods based on the cycling GXT with 3-min stages provides a high agreement with the MLSS in elite cyclists. Despite the high correlation with MLSS and low mean difference, the AT determined by + 1 mmol/l method may highly overestimate or underestimate MLSS in individual subjects. The individual MLSS cannot be properly estimated by V-slope, ModDmax and OBLA4mmol/l methods.

16.
Biomed Res Int ; 2020: 6479630, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923484

RESUMO

Intermittent exposure to hypoxia (IHE) increases the production of reactive oxygen and nitrogen species as well as erythropoietin (EPO), which stimulates the adaptation to intense physical activity. However, several studies suggest a protective effect of moderate hypoxia in cardiovascular disease (CVD) events. The effects of intense physical activity with IHE on oxi-inflammatory mediators and their interaction with conventional CVD risk factors were investigated. Blood samples were collected from elite athletes (control n = 6, IHE n = 6) during a 6-day IHE cycle using hypoxicator GO2 altitude. IHE was held once a day, at least 2 hours after training. In serum, hydrogen peroxide (H2O2), nitric oxide (NO), 3-nitrotyrosine (3-Nitro), proinflammatory cytokines (IL-1ß and TNFα), high sensitivity C-reactive protein (hsCRP), and heat shock protein 27 (HSP27) were determined by the commercial immunoenzyme (ELISA kits) or colorimetric methods. Serum erythropoietin (EPO) level was measured by ELISA kit every day of hypoxia. IHE was found to significantly increase H2O2, NO, and HSP27 but to decrease 3NT concentrations. The changes in 3NT and HSP27 following hypoxia proved to enhance NO bioavailability and endothelial function. In the present study, the oxi-inflammatory mediators IL-1ß and hsCRP increased in IHE group but they did not exceed the reference values. The serum EPO level increased on the 3rd day of IHE, then decreased on 5th day of IHE, and correlated with NO/H2O2 ratio (r s = 0.640, P < 0.05). There were no changes in haematological markers contrary to lipoproteins such as low-density lipoprotein (LDL) and non-high-density lipoprotein (non-HDL) which showed a decreasing trend in response to hypoxic exposure. The study demonstrated that IHE combined with sports activity reduced a risk of endothelial dysfunction and atherogenesis in athletes even though the oxi-inflammatory processes were enhanced. Therefore, 6-day IHE seems to be a potential therapeutic and nonpharmacological method to reduce CVD risk, especially in elite athletes participating in strenuous training.


Assuntos
Endotélio/fisiopatologia , Hipóxia/fisiopatologia , Adaptação Fisiológica/fisiologia , Altitude , Aterosclerose/sangue , Aterosclerose/metabolismo , Aterosclerose/fisiopatologia , Biomarcadores/sangue , Biomarcadores/metabolismo , Citocinas/sangue , Endotélio/metabolismo , Eritropoetina/sangue , Exercício Físico/fisiologia , Humanos , Peróxido de Hidrogênio/sangue , Hipóxia/sangue , Hipóxia/metabolismo , Inflamação/sangue , Inflamação/metabolismo , Inflamação/fisiopatologia , Lipoproteínas/sangue , Masculino , Óxido Nítrico/sangue , Oxigênio/metabolismo , Esportes/fisiologia , Tirosina/análogos & derivados , Tirosina/sangue
17.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759658

RESUMO

Exposure to acute hypoxia causes a detrimental effect on the brain which is also manifested by a decrease in the ability to perform psychomotor tasks. Conversely, brain-derived neurotrophic factor (BDNF), whose levels are elevated in response to exercise, is a well-known factor in improving cognitive function. Therefore, the aim of our study was to investigate whether the exercise under hypoxic conditions affects psychomotor performance. For this purpose, 11 healthy young athletes performed a graded cycloergometer exercise test to volitional exhaustion under normoxia and acute mild hypoxia (FiO2 = 14.7%). Before, immediately after exercise and after a period of recovery, choice reaction time (CRT) and number of correct reactions (NCR) in relation to changes in serum BDNF were examined. Additionally, other selected factors which may modify BDNF production, i.e., cortisol (C), nitrite, catecholamines (adrenalin-A, noradrenaline-NA, dopamine-DA, serotonin-5-HT) and endothelin-1 (ET-1), were also measured. Exercise in hypoxic conditions extended CRT by 13.8% (p < 0.01) and decreased NCR (by 11.5%) compared to rest (p < 0.05). During maximal workload, NCR was lower by 9% in hypoxia compared to normoxia (p < 0.05). BDNF increased immediately after exercise in normoxia (by 29.3%; p < 0.01), as well as in hypoxia (by 50.0%; p < 0.001). There were no differences in BDNF between normoxia and hypoxia. Considering the fact that similar levels of BDNF were seen in both conditions but cognitive performance was suppressed in hypoxia, acute elevation of BDNF did not compensate for hypoxia-induced cognition impairment. Moreover, neither potentially negative effects of C nor positive effects of A, DA and NO on the brain were observed in our study.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Tempo de Reação/fisiologia , Adulto , Atletas , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Hipóxia Celular/genética , Cognição/fisiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/patologia , Exercício Físico/fisiologia , Teste de Esforço/efeitos adversos , Humanos , Masculino , Adulto Jovem
18.
Nutrients ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610647

RESUMO

Intermittent exposure to hypoxia (IHE) increases production of reactive oxygen and nitrogen species which, as signalling molecules, participate in tissue injury-repair-regeneration cascade. The process is also stimulated by arginine whose bioavailability is a limiting factor for NO synthesis. The effects of IHE in combination with arginine (Arg) intake on myogenesis and angiogenesis mediators were examined in a randomized and placebo-controlled trial. Blood samples were collected from 38 elite athletes on the 1st, 7th and 14th days during the training camp. The oral doses of arginine (2 × 6 g/day) and/or IHE using hypoxicator GO2Altitude (IHE and Arg/IHE) were applied. Serum NO and H2O2 concentrations increased significantly and were related to muscle damage (CK activity >900 IU/mL) in IHE and Arg/IHE compared to placebo. The changes in NO and H2O2 elevated the levels of circulating growth factors such as HGF, IHG-1, PDGFBB, BDNF, VEGF and EPO. Modification of the lipid profile, especially reduced non-HDL, was an additional beneficial effect of hypoxic exposure with arginine intake. Intermittent hypoxic exposure combined with high-dose arginine intake was demonstrated to affect circulating mediators of injury-repair-regeneration. Therefore, a combination of IHE and arginine seems to be a potential therapeutic and non-pharmacological method to modulate the myogenesis and angiogenesis in elite athletes.


Assuntos
Arginina/administração & dosagem , Hipóxia/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Regeneração/efeitos dos fármacos , Luta Romana/fisiologia , Altitude , Método Duplo-Cego , Humanos , Peróxido de Hidrogênio/sangue , Masculino , Óxido Nítrico/sangue , Consumo de Oxigênio
19.
J Sports Med Phys Fitness ; 60(5): 677-684, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32438783

RESUMO

BACKGROUND: Erythropoietin (EPO) and vascular endothelial growth factor (VEGF) are important factors regulating erythropoiesis and angiogenesis. Altitude/hypoxic training may induce elevated VEGF-A and EPO levels. However, it appears that the range of adaptive changes depends largely on the training method used. Therefore, we investigated the changes in EPO and VEGF-A levels in athletes using three different altitude/hypoxic training concepts. METHODS: Thirty-four male cyclists were randomly divided into four groups: LH-TL group ("live high-train low" protocol), HiHiLo ("live high - base train high - interval train low" procedure), IHT ("intermittent hypoxic training") and control group (CN, normoxic training). The same 4-week training program was used in all groups. Blood samples were taken before and after each training week in order to evaluate serum EPO and VEGF-A levels. RESULTS: In the LH-TL and HiHiLo groups, EPO increased (P<0.001) after 1st week and remained elevated until 3rd week of altitude training. In the IHT and CN groups, EPO did not change significantly. VEGF-A was higher (P<0.001) after 2nd and 3rd week of training in the IHT group. In the HiHiLo group, VEGF-A changed (P<0.05) only after 3rd week. No significant changes of VEGF-A were noted in the LH-TL and CN groups. CONCLUSIONS: Altitude/hypoxic training is effective in increasing VEGF-A and EPO levels. However, a training method plays a key role in the pattern of adaptations. EPO level increase only when an adequate hypoxic dose is provided, whereas VEGF-A increases when the hypoxic exposure is combined with exercise, particularly at high intensity.


Assuntos
Aclimatação/fisiologia , Eritropoetina/sangue , Exercício Físico/fisiologia , Fator A de Crescimento do Endotélio Vascular/sangue , Adulto , Altitude , Humanos , Hipóxia/sangue , Masculino , Adulto Jovem
20.
Biomed Res Int ; 2019: 5201351, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31886223

RESUMO

The human organism has the ability to adapt to hypoxia conditions. Training in hypoxia is used in sport to improve the efficiency of athletes; however, type of training affects the direction and scope of this process. Therefore, in this study, the usefulness of serum fluorescence spectroscopy to study the assessment of athlete's response to strength effort in hypoxia is considered in comparison with biochemical assay. Six resistance-trained male subjects took part in a research experiment. They performed barbell squats in simulated normobaric hypoxic conditions with deficiency of oxygen 11.3%, 13% 14.3% compared to 21% in normoxic conditions. Fluorescence intensity of tyrosine revealed high sensitivity on strength effort whereas tryptophan was more dependent on high altitude. Changes in emission in the visible region are associated with altering cell metabolism dependent on high altitude as well as strength training and endurance training. Significant changes in serum fluorescence intensity with relatively weak modifications in biochemical assay at 3000 m above sea level (ASL) were observed. Training at 5000 m ASL caused changes in fluorescence parameters towards the normobaric specific values, and pronounced decreases of lactate level and kinase creatine activity were observed. Such modifications of fluorescence and biochemical assay indicate increased adaptation of the organism to effort in oxygen-deficient conditions at 5000 m ASL, unlike 3000 m ASL. Fluorescence spectroscopy study of serum accompanied by biochemical assay can contribute to the understanding of metabolic regulation and the physiological response to hypoxia. The results of serum autofluorescence during various concepts of altitude training may be a useful method to analyze individual response to acute and chronic hypoxia. An endogenous tryptophan could be exploited as intrinsic biomarker in autofluorescence studies. However, these issues require further research.


Assuntos
Atletas , Exercício Físico/fisiologia , Hipóxia/metabolismo , Oxigênio/metabolismo , Espectrometria de Fluorescência/métodos , Adulto , Altitude , Biomarcadores/sangue , Biomarcadores/metabolismo , Creatina Quinase/sangue , Humanos , Hipóxia/sangue , Ácido Láctico/sangue , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...