Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(15): 10681-10693, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37490408

RESUMO

New chemical modalities in drug discovery include molecules belonging to the bRo5 chemical space. Because of their complex and flexible structure, bRo5 compounds often suffer from a poor solubility/permeability profile. Chameleonicity describes the capacity of a molecule to adapt to the environment through conformational changes; the design of molecular chameleons is a medicinal chemistry strategy simultaneously optimizing solubility and permeability. A default method to quantify chameleonicity in early drug discovery is still missing. Here we introduce Chamelogk, an automated, fast, and cheap chromatographic descriptor of chameleonicity. Moreover, we report measurements for 55 Ro5 and bRo5 compounds and validate our method with literature data. Then, selected case studies (macrocycles, nonmacrocyclic compounds, and PROTACs) are used to illustrate the application of Chamelogk in combination with lipophilicity (BRlogD) and polarity (Δ log kwIAM) descriptors. Overall, we show how Chamelogk deserves being included in property-based drug discovery strategies to design oral bioavailable bRo5 compounds.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Solubilidade , Permeabilidade , Preparações Farmacêuticas
2.
Molecules ; 28(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36770875

RESUMO

Proteolysis-Targeting Chimeras (PROTACs) have recently emerged as a promising technology in the drug discovery landscape. Large interest in the degradation of the androgen receptor (AR) as a new anti-prostatic cancer strategy has resulted in several papers focusing on PROTACs against AR. This study explores the potential of a few in silico tools to extract drug design information from AR degradation data in the format often reported in the literature. After setting up a dataset of 92 PROTACs with consistent AR degradation values, we employed the Bemis-Murcko method for their classification. The resulting clusters were not informative in terms of structure-degradation relationship. Subsequently, we performed Degradation Cliff analysis and identified some key aspects conferring a positive contribution to activity, as well as some methodological limits when applying this approach to PROTACs. Linker structure degradation relationships were also investigated. Then, we built and characterized ternary complexes to validate previous results. Finally, we implemented machine learning classification models and showed that AR degradation for VHL-based but not CRBN-based PROTACs can be predicted from simple permeability-related 2D molecular descriptors.


Assuntos
Receptores Androgênicos , Ubiquitina-Proteína Ligases , Ubiquitina-Proteína Ligases/metabolismo , Proteólise , Receptores Androgênicos/metabolismo , Desenho de Fármacos , Descoberta de Drogas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA