Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36834892

RESUMO

Most oropharyngeal squamous cell carcinomas (OPSCCs) are human papillomavirus (HPV)-associated, high-risk (HR) cancers that show a better response to chemoradiotherapy and are associated with improved survival. Nucleophosmin (NPM, also called NPM1/B23) is a nucleolar phosphoprotein that plays different roles within the cell, such as ribosomal synthesis, cell cycle regulation, DNA damage repair and centrosome duplication. NPM is also known as an activator of inflammatory pathways. An increase in NPM expression has been observed in vitro in E6/E7 overexpressing cells and is involved in HPV assembly. In this retrospective study, we investigated the relationship between the immunohistochemical (IHC) expression of NPM and HR-HPV viral load, assayed by RNAScope in situ hybridization (ISH), in ten patients with histologically confirmed p16-positive OPSCC. Our findings show that there is a positive correlation between NPM expression and HR-HPV mRNA (Rs = 0.70, p = 0.03), and a linear regression (r2 = 0.55; p = 0.01). These data support the hypothesis that NPM IHC, together with HPV RNAScope, could be used as a predictor of transcriptionally active HPV presence and tumor progression, which is useful for therapy decisions. This study includes a small cohort of patients and, cannot report conclusive findings. Further studies with large series of patients are needed to support our hypothesis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Proteínas Oncogênicas Virais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Carcinoma de Células Escamosas/patologia , Inibidor p16 de Quinase Dependente de Ciclina , DNA Viral/genética , Papillomavirus Humano , Nucleofosmina , Proteínas Oncogênicas Virais/genética , Neoplasias Orofaríngeas/patologia , Papillomaviridae/genética , Estudos Retrospectivos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Carga Viral
2.
Front Cardiovasc Med ; 9: 867813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571214

RESUMO

We previously showed that genotoxic stress induced an active extracellular release of nucleophosmin (NPM) in human cardiac mesenchymal progenitor cells, and that serum deprivation provokes NPM secretion from human endothelial cells, eliciting inflammation via nuclear factor kappa B (NF-kB) transcriptional activation. In this study, we wanted to determine whether NPM was similarly modulated in the skin and plasma of psoriatic patients (Pso). We found that NPM was induced in 6 skin biopsies compared to 6 normal skin biopsies and was markedly increased in lesional (LS) vs. non-lesional skin (NLS) biopsies. Moreover, NPM was also increased at the transcriptional levels in LS vs. NLS. Both the innate stimuli, such as lipopolysaccharides and Poly inositol-cytosine and adaptive stimuli, that is, cytokine mix, were able to induce the extracellular release of NPM in immortalized keratinocytes and human skin fibroblasts in the absence of cytotoxicity. Interestingly, NPM interacts with Toll-like receptor (TLR)4 in these cells and activates an NF-kB-dependent inflammatory pathway upregulating interleukin IL-6 and COX-2 gene expression. Finally, circulating NPM was increased in the plasma of 29 Pso compared to 29 healthy controls, and positively correlates with psoriasis area severity index (PASI) and with determinants of cardiovascular diseases (CVDs), such as pulse wave velocity, systolic pressure, and left ventricular mass. Furthermore, NPM positively correlates with miR-200c circulating levels, which we previously showed to increase in Pso and correlate with CVD progression. Our data show that circulating miR-200c is physically associated with extracellular NPM, which most probably is responsible for its extracellular release and protection upon cytokine mix via a TLR4-mechanism. In conclusion, NPM is increased in psoriasis both in the skin and plasma and might be considered a novel biologic target to counteract chronic inflammation associated with CVD risk.

3.
Animals (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268154

RESUMO

A prospective, randomized clinical trial was designed to compare four epidural treatments in dogs undergoing total unilateral mastectomy. The epidural volume of injectate was based on the individual occipito-coccygeal length (OCL) aiming to reach the first thoracic vertebra (T1). The first ten dogs were allocated in a control group (C) and did not receive epidural treatment. Subsequently, forty dogs were randomly allocated in four groups of ten: epidural ropivacaine 0.5% (R0.5%); morphine 0.1 mg kg−1 plus ropivacaine 0.5% (MR0.5%); morphine 0.1 mg kg−1 plus ropivacaine 0.35% (MR0.35%); morphine 0.1 mg kg−1 plus ropivacaine 0.25% (MR0.25%). Intraoperatively, isoflurane requirement (1.3% vs. <1.1% FE'Iso) and fentanyl requirement (9.8 vs. <1.1 µg kg−1 h−1) were significantly higher in C group compared to all epidural groups. Postoperatively, methadone requirement was higher (1.8 mg kg−1 vs. <0.8 mg kg−1) for C group compared to all epidural treatment groups. The ability to walk and to urinate returned 4 h earlier in MR0.35% and MR0.25%. The mean epidural volume of ropivacaine, using a dose regimen based on OCL, to reach T1 was about 0.15 mL cm−1. The addition of morphine further reduced the methadone requirement, without affecting urinary and motor functions.

4.
Hum Mol Genet ; 31(8): 1308-1324, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34740256

RESUMO

Epidermolysis bullosa simplex (EBS) with cardiomyopathy (EBS-KLHL24) is an EBS subtype caused by dominantly inherited, gain-of-function mutations in the gene encoding for the ubiquitin-ligase KLHL24, which addresses specific proteins to proteasomal degradation. EBS-KLHL24 patients are born with extensive denuded skin areas and skin fragility. Whilst skin fragility rapidly ameliorates, atrophy and scarring develop over time, accompanied by life-threatening cardiomyopathy. To date, pathogenetic mechanisms underlying such a unique disease phenotype are not fully characterized. The basal keratin 14 (K14) has been indicated as a KLHL24 substrate in keratinocytes. However, EBS-KLHL24 pathobiology cannot be determined by the mutation-enhanced disruption of K14 alone, as K14 is similarly expressed in foetal and postnatal epidermis and its protein levels are preserved both in vivo and in vitro disease models. In this study, we focused on foetal keratins as additional KLHL24 substrates. We showed that K7, K8, K17 and K18 protein levels are markedly reduced via proteasome degradation in normal foetal keratinocytes transduced with the mutant KLHL24 protein (ΔN28-KLHL24) as compared to control cells expressing the wild-type form. In addition, heat stress led to keratin network defects and decreased resilience in ΔN28-KLHL24 cells. The KLHL24-mediated degradation of foetal keratins could contribute to congenital skin defects in EBS-KLHL24. Furthermore, we observed that primary keratinocytes from EBS-KLHL24 patients undergo accelerated clonal conversion with reduced colony forming efficiency (CFE) and early replicative senescence. Finally, our findings pointed out a reduced CFE in ΔN28-KLHL24-transduced foetal keratinocytes as compared to controls, suggesting that mutant KLHL24 contributes to patients' keratinocyte clonogenicity impairment.


Assuntos
Cardiomiopatias , Epidermólise Bolhosa Simples , Proteínas Repressoras/genética , Anormalidades da Pele , Cardiomiopatias/patologia , Epidermólise Bolhosa Simples/genética , Epidermólise Bolhosa Simples/metabolismo , Epidermólise Bolhosa Simples/patologia , Feminino , Humanos , Queratinócitos/metabolismo , Queratinas/metabolismo , Mutação , Gravidez , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Anormalidades da Pele/patologia
5.
Vasc Biol ; 3(1): R49-R68, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34291190

RESUMO

Psoriasis is a chronic inflammatory disease involving the skin. Both genetic and environmental factors play a pathogenic role in psoriasis and contribute to the severity of the disease. Psoriasis, in fact, has been associated with different comorbidities such as diabetes, metabolic syndrome, gastrointestinal or kidney diseases, cardiovascular disease (CVD), and cerebrovascular diseases (CeVD). Indeed, life expectancy in severe psoriasis is reduced by up to 5 years due to CVD and CeVD. Moreover, patients with severe psoriasis have a higher prevalence of traditional cardiovascular (CV) risk factors, including dyslipidemia, diabetes, smoking, and hypertension. Further, systemic inflammation is associated with oxidative stress increase and induces endothelial damage and atherosclerosis progression. Different miRNA have been already described in psoriasis, both in the skin tissues and in the blood flow, to play a role in the progression of disease. In this review, we will summarize and discuss the most important miRNAs that play a role in psoriasis and are also linked to CVD.

6.
Int J Mol Sci ; 22(9)2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34067060

RESUMO

Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF ß1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF ß1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF ß1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.


Assuntos
Transição Epitelial-Mesenquimal , Epitélio/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , MicroRNAs/metabolismo , Pericárdio/patologia , Animais , Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Mesoderma/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Transformador beta1/farmacologia
7.
BMC Biol ; 19(1): 124, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134693

RESUMO

BACKGROUND: Doxorubicin (Dox) is an anti-cancer anthracycline drug that causes double-stranded DNA breaks. It is highly effective against several types of tumours; however, it also has adverse effects on regenerative populations of normal cells, such as human cardiac mesenchymal progenitor cells (hCmPCs), and its clinical use is limited by cardiotoxicity. Another known effect of Dox is nucleolar disruption, which triggers the ubiquitously expressed nucleolar phosphoprotein Nucleophosmin (NPM) to be released from the nucleolus into the cell, where it participates in the orchestration of cellular stress responses. NPM has also been observed in the extracellular space in response to different stress stimuli; however, the mechanism behind this and its functional implications are as yet largely unexplored. The aim of this study was to establish whether Dox could elicit NPM secretion in the extracellular space and to elucidate the mechanism of secretion and the effect of extracellular NPM on hCmPCs. RESULTS: We found that following the double-strand break formation in hCmPCs caused by Dox, NPM was rapidly secreted in the extracellular space by an active mechanism, in the absence of either apoptosis or necrosis. Extracellular release of NPM was similarly seen in response to ultraviolet radiation (UV). Furthermore, we observed an increase of NPM levels in the plasma of Dox-treated mice; thus, NPM release also occurred in vivo. The treatment of hCmPCs with extracellular recombinant NPM induced a decrease of cell proliferation and a response mediated through the Toll-like receptor (TLR)4. We demonstrated that NPM binds to TLR4, and via TLR4, and nuclear factor kappa B (NFkB) activation/nuclear translocation, exerts proinflammatory functions by inducing IL-6 and COX-2 gene expression. Finally, we found that in hCmPCs, NPM secretion could be driven by an autophagy-dependent unconventional mechanism that requires TLR4, since TLR4 inhibition dramatically reduced Dox-induced secretion. CONCLUSIONS: We hypothesise that the extracellular release of NPM could be a general response to DNA damage since it can be elicited by either a chemical agent such as Dox or a physical genotoxic stressor such as UV radiation. Following genotoxic stress, NPM acts similarly to an alarmin in hCmPCs, being rapidly secreted and promoting cell cycle arrest and a TLR4/NFκB-dependent inflammatory response.


Assuntos
Células-Tronco Mesenquimais , Alarminas , Animais , Apoptose , Comunicação Autócrina , Doxorrubicina/efeitos adversos , Coração , Humanos , Camundongos , NF-kappa B , Proteínas Nucleares/genética , Nucleofosmina , Comunicação Parácrina , Receptor 4 Toll-Like/genética , Raios Ultravioleta
8.
Int J Mol Sci ; 22(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916025

RESUMO

Nucleophosmin (NPM), a nucleolar multifunctional phosphoprotein, acts as a stress sensor in different cell types. NPM can be actively secreted by inflammatory cells, however its biology on endothelium remains unexplored. In this study, we show for the first time that NPM is secreted by human vein endothelial cells (HUVEC) in the early response to serum deprivation and that NPM acts as a pro-inflammatory and angiogenic molecule both in vitro and in vivo. Accordingly, 24 h of serum starvation condition induced NPM relocalization from the nucleus to cytoplasm. Interestingly, NPM was increasingly excreted in HUVEC-derived conditioned media in a time dependent fashion upon stress conditions up to 24 h. The secretion of NPM was unrelated to cell necrosis within 24 h. The treatment with exogenous and recombinant NPM (rNPM) enhanced migration as well as the Intercellular Adhesion Molecule 1 (ICAM-1) but not Vascular cell adhesion protein 1 (VCAM-1) expression and it did not affect cell proliferation. Notably, in vitro tube formation by Matrigel assay was significantly increased in HUVEC treated with rNPM compared to controls. This result was confirmed by the in vivo injection of Matrigel plug assay upon stimulation with rNPM, displaying significant enhanced number of functional capillaries in the plugs. The stimulation with rNPM in HUVEC was also associated to the increased expression of master genes regulating angiogenesis and migration, including Vascular Endothelial Growth Factor-A (VEGF-A), Hepatocyte Growth Factor (HGF), Stromal derived factor-1 (SDF-1), Fibroblast growth factor-2 (FGF-2), Platelet Derived Growth Factor-B (PDGF-B), and Matrix metallopeptidase 9 (MMP9). Our study demonstrates for the first time that NPM is physiologically secreted by somatic cells under stress condition and in the absence of cell necrosis. The analysis of the biological effects induced by NPM mainly related to a pro-angiogenic and inflammatory activity might suggest an important autocrine/paracrine role for NPM in the regulation of both phenomena.


Assuntos
Células Endoteliais/fisiologia , Neovascularização Patológica , Proteínas Nucleares/metabolismo , Estresse Fisiológico , Células Endoteliais da Veia Umbilical Humana , Humanos , Nucleofosmina
9.
Appl Ergon ; 88: 103176, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32678783

RESUMO

We present the design and test of a wearable device capable to detect the user's trunk orientation with respect to the gravitational field and to provide tactile stimulation to correct tilted positions. Vibrations are delivered to the shoulders, the frontal and dorsal parts of the trunk, by using the human body as an indicator of the four cardinal directions. The device was experimentally tested in normal gravity conditions by thirty-nine volunteers. The efficacy of tactile cues was investigated in comparison to visual and visuo-tactile cues. The results revealed that, despite the fact that the time needed to complete the task was shorter when people were guided by visual signals, the tactile cues were equally informative and, in some cases, the trunk spatial orientation was even more accurate. Overall, tactile cues were evaluated by users as more intuitive, effective and accurate.


Assuntos
Orientação Espacial , Análise e Desempenho de Tarefas , Tato/fisiologia , Interface Usuário-Computador , Dispositivos Eletrônicos Vestíveis , Sinais (Psicologia) , Feminino , Gravitação , Humanos , Masculino , Estimulação Luminosa , Estimulação Física , Ombro/fisiologia , Fatores de Tempo , Tronco/fisiologia , Vibração , Adulto Jovem
10.
Cancers (Basel) ; 12(3)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192047

RESUMO

Cancer treatment has made significant progress in the cure of different types of tumors. Nevertheless, its clinical use is limited by unwanted cardiotoxicity. Aside from the conventional chemotherapy approaches, even the most newly developed, i.e., molecularly targeted therapy and immunotherapy, exhibit a similar frequency and severity of toxicities that range from subclinical ventricular dysfunction to severe cardiomyopathy and, ultimately, congestive heart failure. Specific mechanisms leading to cardiotoxicity still remain to be elucidated. For instance, oxidative stress and DNA damage are considered key players in mediating cardiotoxicity in different treatments. microRNAs (miRNAs) act as key regulators in cell proliferation, cell death, apoptosis, and cell differentiation. Their dysregulation has been associated with adverse cardiac remodeling and toxicity. This review provides an overview of the cardiotoxicity induced by different oncologic treatments and potential miRNAs involved in this effect that could be used as possible therapeutic targets.

11.
J Clin Med ; 8(12)2019 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-31766415

RESUMO

AIMS: Anti-Apolipoprotein A-1 autoantibodies (anti-ApoA-1 IgG) promote atherogenesis via innate immune receptors, and may impair cellular cholesterol homeostasis (CH). We explored the presence of anti-ApoA-1 IgG in children (5-15 years old) with or without familial hypercholesterolemia (FH), analyzing their association with lipid profiles, and studied their in vitro effects on foam cell formation, gene regulation, and their functional impact on cholesterol passive diffusion (PD). METHODS: Anti-ApoA-1 IgG and lipid profiles were measured on 29 FH and 25 healthy children. The impact of anti-ApoA-1 IgG on key CH regulators (SREBP2, HMGCR, LDL-R, ABCA1, and miR-33a) and foam cell formation detected by Oil Red O staining were assessed using human monocyte-derived macrophages. PD experiments were performed using a validated THP-1 macrophage model. RESULTS: Prevalence of high anti-ApoA-1 IgG levels (seropositivity) was about 38% in both study groups. FH children seropositive for anti-ApoA-1 IgG had significant lower total cholesterol LDL and miR-33a levels than those who were seronegative. On macrophages, anti-ApoA-1 IgG induced foam cell formation in a toll-like receptor (TLR) 2/4-dependent manner, accompanied by NF-kB- and AP1-dependent increases of SREBP-2, LDL-R, and HMGCR. Despite increased ABCA1 and decreased mature miR-33a expression, the increased ACAT activity decreased membrane free cholesterol, functionally culminating to PD inhibition. CONCLUSIONS: Anti-ApoA-1 IgG seropositivity is frequent in children, unrelated to FH, and paradoxically associated with a favorable lipid profile. In vitro, anti-ApoA-1 IgG induced foam cell formation through a complex interplay between innate immune receptors and key cholesterol homeostasis regulators, functionally impairing the PD cholesterol efflux capacity of macrophages.

12.
Clin Sci (Lond) ; 132(22): 2423-2436, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30389857

RESUMO

Early recognition of vulnerable carotid plaques could help in identifying patients at high stroke risk, who may benefit from earlier revascularisation. Nowadays, different biomarkers of plaque instability have been unravelled, among these miRNAs are promising tools for the diagnosis and treatment of atherosclerosis. Inflammation, reactive oxygen species (ROS) and endothelial dysfunction play a key role in unstable plaques genesis. We showed that miR-200c induces endothelial dysfunction, ROS production and a positive mechanism among miR-200c and miR-33a/b, two miRNAs involved in atherosclerosis progression. The goal of the present study was to determine whether miR-200c could be an atherosclerosis biomarker. Carotid plaques of patients that underwent carotid endarterectomy (CEA) were assayed for miR-200c expression. miR-200c was up-regulated in carotid plaques (n=22) and its expression was higher in unstable (n=12) compared with stable (n=10) plaques. miR-200c positively correlated with instability biomarkers (i.e. monocyte chemoattractant protein-1, cicloxigenase-2 (COX2), interleukin 6 (IL6), metalloproteinase (MMP) 1 (MMP1), 9 (MMP9)) and miR-33a/b. Moreover, miR-200c negatively correlated with stability biomarkers (i.e. zinc finger E-box binding homoeobox 1 (ZEB1), endothelial nitric oxide (NO) synthase (eNOS), forkhead boxO1 (FOXO1) and Sirtuin1 (SIRT1)) (stable plaques = 15, unstable plaques = 15). Circulating miR-200c was up-regulated before CEA in 24 patients, correlated with miR-33a/b and decreased 1 day after CEA. Interestingly, 1 month after CEA, circulating miR-200c is low in patients with stable plaques (n=11) and increased to control levels, in patients with unstable plaques (n=13). Further studies are needed to establish whether miR-200c represents a circulating biomarker of plaque instability. Our results show that miR-200c is an atherosclerotic plaque progression biomarker and suggest that it may be clinically useful to identify patients at high embolic risk.


Assuntos
Artérias Carótidas/patologia , Estenose das Carótidas/genética , MicroRNAs/genética , Placa Aterosclerótica , Idoso , Artérias Carótidas/diagnóstico por imagem , Artérias Carótidas/cirurgia , Estenose das Carótidas/diagnóstico por imagem , Estenose das Carótidas/patologia , Estenose das Carótidas/cirurgia , Endarterectomia das Carótidas , Feminino , Regulação da Expressão Gênica , Marcadores Genéticos , Humanos , Masculino , MicroRNAs/sangue , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Ruptura Espontânea , Fatores de Tempo , Resultado do Tratamento , Ultrassonografia
13.
Oxid Med Cell Longev ; 2018: 4814696, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636844

RESUMO

Duchenne muscular dystrophy (DMD) is a genetic disease associated with mutations of Dystrophin gene that regulate myofiber integrity and muscle degeneration, characterized by oxidative stress increase. We previously published that reactive oxygen species (ROS) induce miR-200c that is responsible for apoptosis and senescence. Moreover, we demonstrated that miR-200c increases ROS production and phosphorylates p66Shc in Ser-36. p66Shc plays an important role in muscle differentiation; we previously showed that p66Shc-/- muscle satellite cells display lower oxidative stress levels and higher proliferation rate and differentiated faster than wild-type (wt) cells. Moreover, myogenic conversion, induced by MyoD overexpression, is more efficient in p66Shc-/- fibroblasts compared to wt cells. Herein, we report that miR-200c overexpression in cultured myoblasts impairs skeletal muscle differentiation. Further, its overexpression in differentiated myotubes decreases differentiation indexes. Moreover, anti-miR-200c treatment ameliorates myogenic differentiation. In keeping, we found that miR-200c and p66Shc Ser-36 phosphorylation increase in mdx muscles. In conclusion, miR-200c inhibits muscle differentiation, whereas its inhibition ameliorates differentiation and its expression levels are increased in mdx mice and in differentiated human myoblasts of DMD. Therefore, miR-200c might be responsible for muscle wasting and myotube loss, most probably via a p66Shc-dependent mechanism in a pathological disease such as DMD.


Assuntos
Diferenciação Celular/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/fisiopatologia , Distrofia Muscular Animal/fisiopatologia , Regeneração , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo , Animais , Linhagem Celular , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , MicroRNAs/genética , Fibras Musculares Esqueléticas/metabolismo , Fosforilação , Fosfosserina/metabolismo
14.
Clin Sci (Lond) ; 131(18): 2397-2408, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811385

RESUMO

Hypercholesterolaemia provokes reactive oxygen species (ROS) increase and is a major risk factor for cardiovascular disease (CVD) development. We previously showed that circulating miR-33a/b expression levels were up-regulated in children with familial hypercholesterolaemia (FH). miR-33a/b control cholesterol homoeostasis and recently miR-33b has been demonstrated to directly target the transcription factor zinc finger E-box-binding homeobox 1 (ZEB1). The latter acts in a negative feedback loop with the miR-200 family. Our previous studies showed that the ROS-dependent miR-200c up-regulation induces endothelial dysfunction and provokes a ZEB1-dependent apoptosis and senescence. In the present study, we aimed to verify whether circulating miR-200c was induced in FH children, and whether a correlation existed with miR-33a/b Total RNA was extracted from plasma of 28 FH children and 25 age-matched healthy subjects (HS) and miR-200c levels were measured. We found that miR-200c was up-regulated in FH compared with HS (4.00 ± 0.48-fold increase, P<0.05) and exhibited a positive correlation with miR-33a/b. miR-200c did not correlate with plasma lipids, but correlated with C-reactive protein (CRP) plasma levels and glycaemia (GLI). Ordinary least squares (OLS) regression analysis revealed that miR-200c was significantly affected by GLI and by miR-33a (P<0.01; P<0.001 respectively). Moreover, we found that miR-33 overexpression, in different cell lines, decreased ZEB1 expression and up-regulated both the intracellular and the extracellular miR-200c expression levels. In conclusion, circulating miR-200c is up-regulated in FH, probably due to oxidative stress and inflammation and via a miR-33a/b-ZEB1-dependent mechanism. The present study could provide the first evidence to point to the use of miR-33a/b and miR-200c, as early biomarkers of CVD, in paediatric FH.


Assuntos
Hiperlipoproteinemia Tipo II/metabolismo , MicroRNAs/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/fisiologia , Adolescente , Glicemia/análise , Proteína C-Reativa/análise , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Hiperlipoproteinemia Tipo II/genética , Masculino , MicroRNAs/sangue , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima
15.
Proc Math Phys Eng Sci ; 473(2198): 20160722, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28293136

RESUMO

In this paper, the role of gradient micro-inertia terms [Formula: see text] and free micro-inertia terms [Formula: see text] is investigated to unveil their respective effects on the dynamic behaviour of band-gap metamaterials. We show that the term [Formula: see text] alone is only able to disclose relatively simplified dispersive behaviour. On the other hand, the term [Formula: see text] alone describes the full complex behaviour of band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows us to describe a new feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher frequencies. We also show that a split of the gradient micro-inertia [Formula: see text], in the sense of Cartan-Lie decomposition of matrices, allows us to flatten separately the longitudinal and transverse optic branches, thus giving us the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia [Formula: see text] on more classical enriched models such as the Mindlin-Eringen and the internal variable ones. We find that the addition of such a gradient micro-inertia allows for the onset of one band-gap in the Mindlin-Eringen model and three band-gaps in the internal variable model. In this last case, however, non-local effects cannot be accounted for, which is a too drastic simplification for most metamaterials. We conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains the best performing one, among the considered enriched models, for the description of non-local band-gap metamaterials.

16.
Proc Math Phys Eng Sci ; 473(2197): 20160790, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28265200

RESUMO

For the recently introduced isotropic-relaxed micromorphic generalized continuum model, we show that, under the assumption of positive-definite energy, planar harmonic waves have real velocity. We also obtain a necessary and sufficient condition for real wave velocity which is weaker than the positive definiteness of the energy. Connections to isotropic linear elasticity and micropolar elasticity are established. Notably, we show that strong ellipticity does not imply real wave velocity in micropolar elasticity, whereas it does in isotropic linear elasticity.

17.
Antioxid Redox Signal ; 27(6): 328-344, 2017 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-27960536

RESUMO

AIMS: Reactive oxygen species (ROS) play a pivotal role in different pathologic conditions, including ischemia, diabetes, and aging. We previously showed that ROS enhance miR-200c expression, causing endothelial cell (EC) apoptosis and senescence. Herein, we dissect the interaction among miR-200c and three strictly related proteins that modulate EC function and ROS production: sirtuin 1 (SIRT1), endothelial nitric oxide synthase (eNOS), and forkhead box O1 (FOXO1). Moreover, the role of miR-200c on ROS modulation was also investigated. RESULTS: We demonstrated that miR-200c directly targets SIRT1, eNOS, and FOXO1; via this mechanism, miR-200c decreased NO and increased the acetylation of SIRT1 targets, that is, FOXO1 and p53. FOXO1 acetylation inhibited its transcriptional activity on target genes, that is, SIRT1 and the ROS scavengers, catalase and manganese superoxide dismutase. In keeping, miR-200c increased ROS production and induced p66Shc protein phosphorylation in Ser-36; this mechanism upregulated ROS and inhibited FOXO1 transcription, reinforcing this molecular circuitry. These in vitro results were validated in three in vivo models of oxidative stress, that is, human skin fibroblasts from old donors, femoral arteries from old mice, and a murine model of hindlimb ischemia. In all cases, miR-200c was higher versus control and its targets, that is, SIRT1, eNOS, and FOXO1, were downmodulated. In the mouse hindlimb ischemia model, anti-miR-200c treatment rescued these targets and improved limb perfusion. Innovation and Conclusion: miR-200c disrupts SIRT1/FOXO1/eNOS regulatory loop. This event promotes ROS production and decreases NO, contributing to endothelial dysfunction under conditions of increased oxidative stress such as aging and ischemia. Antioxid. Redox Signal. 27, 328-344.


Assuntos
Proteína Forkhead Box O1/metabolismo , MicroRNAs/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Sirtuína 1/genética , Acetilação , Animais , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Estresse Oxidativo , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/metabolismo
18.
Aging Cell ; 16(2): 262-272, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27995756

RESUMO

To understand why livers from aged donors are successfully used for transplants, we looked for markers of liver aging in 71 biopsies from donors aged 12-92 years before transplants and in 11 biopsies after transplants with high donor-recipient age-mismatch. We also assessed liver function in 36 age-mismatched recipients. The major findings were the following: (i) miR-31-5p, miR-141-3p, and miR-200c-3p increased with age, as assessed by microRNAs (miRs) and mRNA transcript profiling in 12 biopsies and results were validated by RT-qPCR in a total of 58 biopsies; (ii) telomere length measured by qPCR in 45 samples showed a significant age-dependent shortage; (iii) a bioinformatic approach combining transcriptome and miRs data identified putative miRs targets, the most informative being GLT1, a glutamate transporter expressed in hepatocytes. GLT1 was demonstrated by luciferase assay to be a target of miR-31-5p and miR-200c-3p, and both its mRNA (RT-qPCR) and protein (immunohistochemistry) significantly decreased with age in liver biopsies and in hepatic centrilobular zone, respectively; (iv) miR-31-5p, miR-141-3p and miR-200c-3p expression was significantly affected by recipient age (older environment) as assessed in eleven cases of donor-recipient extreme age-mismatch; (v) the analysis of recipients plasma by N-glycans profiling, capable of assessing liver functions and biological age, showed that liver function recovered after transplants, independently of age-mismatch, and recipients apparently 'rejuvenated' according to their glycomic age. In conclusion, we identified new markers of aging in human liver, their relevance in donor-recipient age-mismatches in transplantation, and offered positive evidence for the use of organs from old donors.


Assuntos
Envelhecimento/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Transplante de Fígado , Fígado/metabolismo , MicroRNAs/metabolismo , Doadores de Tecidos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Transportador 2 de Aminoácido Excitatório , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Imuno-Histoquímica , Luciferases/metabolismo , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Telômero/metabolismo , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/metabolismo , Adulto Jovem
19.
Proc Math Phys Eng Sci ; 472(2190): 20160169, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27436984

RESUMO

In this paper, we propose the first estimate of some elastic parameters of the relaxed micromorphic model on the basis of real experiments of transmission of longitudinal plane waves across an interface separating a classical Cauchy material (steel plate) and a phononic crystal (steel plate with fluid-filled holes). A procedure is set up in order to identify the parameters of the relaxed micromorphic model by superimposing the experimentally based profile of the reflection coefficient (plotted as function of the wave-frequency) with the analogous profile obtained via numerical simulations. We determine five out of six constitutive parameters which are featured by the relaxed micromorphic model in the isotropic case, plus the determination of the micro-inertia parameter. The sixth elastic parameter, namely the Cosserat couple modulus µc , still remains undetermined, since experiments on transverse incident waves are not yet available. A fundamental result of this paper is the estimate of the non-locality intrinsically associated with the underlying microstructure of the metamaterial. We show that the characteristic length Lc measuring the non-locality of the phononic crystal is of the order of [Formula: see text] of the diameter of its fluid-filled holes.

20.
Blood Transfus ; 5(4): 217-26, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19204778

RESUMO

INTRODUCTION: Selecting units of rare blood for transfusion to patients with complex immunisation is one of the most critical processes of a Transfusion Centre. In January 2005 the 'Rare Blood Components Bank - Reference Centre of the Region of Lombardy' w as established with the following goals: 1) identifying regional rare blood donors; 2) creating a regional registry of rare donors; 3) organising a regional bank of liquid and frozen rare blood units; 4) setting up a regional Immunohaematology Reference Laboratory (IRL) to type donors and resolve complex cases. METHODS: The key elements in establishing the Bank were periodic meetings organised by the directors and representatives of the regional Departments of Transfusion Medicine and Haematology (DTMH) and the institution of three working groups (informatics, regulations, finance). RESULTS: The regional IRL was set up, the relevant operating procedures were distributed region-wide, software features were defined and later validated upon activation, and the funds assigned were allocated to various cost items. The number and characteristics of the donors to be typed were identified and 14 regional DTMHs started to send samples. Overall, 20,714 donors were typed, for a total of 258,003 typings, and 2,880 rare donors were identified. Of these, 97% were rare donors because of combinations of antigens (2,139 negative for the S antigen and 659 negative for the s antigen) and 3% (n=82) because they were negative for high-frequency antigens. In the first 2 years of activity, the IRL carried out investigations of 140 complex cases referred from other Centres and distributed 2,024 units with rare phenotypes to 142 patients. CONCLUSIONS: The main goal achieved in the first 24 months from the start of the project was to set up a regional network able to meet the transfusion needs of patients with complex immunisation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...