Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biophys J ; 122(23): 4598-4613, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37936351

RESUMO

Collective cell migration, whereby cells adhere to form multi-cellular clusters that move as a single entity, play an important role in numerous biological processes, such as during development and cancer progression. Recent experimental work focused on migration of one-dimensional cellular clusters, confined to move along adhesive lanes, as a simple geometry in which to systematically study this complex system. One-dimensional migration also arises in the body when cells migrate along blood vessels, axonal projections, and narrow cavities between tissues. We explore here the modes of one-dimensional migration of cellular clusters ("trains") by implementing cell-cell interactions in a model of cell migration that contains a mechanism for spontaneous cell polarization. We go beyond simple phenomenological models of the cells as self-propelled particles by having the internal polarization of each cell depend on its interactions with the neighboring cells that directly affect the actin polymerization activity at the cell's leading edges. Both contact inhibition of locomotion and cryptic lamellipodia interactions between neighboring cells are introduced. We find that this model predicts multiple motility modes of the cell trains, which can have several different speeds for the same polarization pattern. Compared to experimental data, we find that Madin-Darby canine kidney cells are poised along the transition region where contact inhibition of locomotion and cryptic lamellipodia roughly balance each other, where collective migration speed is most sensitive to the values of the cell-cell interaction strength.


Assuntos
Comunicação Celular , Modelos Biológicos , Animais , Cães , Células Madin Darby de Rim Canino , Movimento Celular/fisiologia , Comunicação Celular/fisiologia , Pseudópodes
2.
bioRxiv ; 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37745526

RESUMO

For eukaryotic cells to heal wounds, respond to immune signals, or metastasize, they must migrate, often by adhering to extracellular matrix. Cells may also secrete matrix factors, leaving behind a footprint that influences their crawling. Recent experiments showed that epithelial cells on micropatterned adhesive stripes move persistently in regions they have previously crawled over, where footprints have been formed, but barely advance into unexplored regions, creating an oscillatory migration of increasing amplitude. Here, we explore through mathematical modeling how footprint secretion and cell responses to footprint combine to allow cells to develop oscillation and other complex migratory motions. We simulate cell crawling with a phase field model coupled to a biochemical model of cell polarity, assuming local contact with the secreted footprint activates Rac1, a polarity protein at the front of the cell. Depending on the footprint secretion rate and the response to the footprint, cells on micropatterned lines can display a variety of types of motility, including confined, oscillatory, and persistent motion. On 2D substrates, we predict a transition between cells undergoing circular motion and cells developing a more exploratory phenotype. Our model shows how minor changes in a cell's interaction with its footprint can completely alter exploration, allowing cells to tightly regulate their motion, as well as leading to a wide spectrum of behaviors when secretion or sensing is variable from cell to cell. Consistent with our computational predictions, we find in earlier experimental data evidence of cells undergoing both circular and exploratory motion. Our work proposes a new paradigm for how cells regulate their own motility.

4.
Sci Adv ; 8(37): eabn5406, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36103541

RESUMO

Three-dimensional collective epithelial rotation around a given axis represents a coordinated cellular movement driving tissue morphogenesis and transformation. Questions regarding these behaviors and their relationship with substrate curvatures are intimately linked to spontaneous active matter processes and to vital morphogenetic and embryonic processes. Here, using interdisciplinary approaches, we study the dynamics of epithelial layers lining different cylindrical surfaces. We observe large-scale, persistent, and circumferential rotation in both concavely and convexly curved cylindrical tissues. While epithelia of inverse curvature show an orthogonal switch in actomyosin network orientation and opposite apicobasal polarities, their rotational movements emerge and vary similarly within a common curvature window. We further reveal that this persisting rotation requires stable cell-cell adhesion and Rac-1-dependent cell polarity. Using an active polar gel model, we unveil the different relationships of collective cell polarity and actin alignment with curvatures, which lead to coordinated rotational behavior despite the inverted curvature and cytoskeleton order.

5.
Biophys J ; 121(1): 44-60, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34890578

RESUMO

Cell dispersion from a confined area is fundamental in a number of biological processes, including cancer metastasis. To date, a quantitative understanding of the interplay of single-cell motility, cell proliferation, and intercellular contacts remains elusive. In particular, the role of E- and N-cadherin junctions, central components of intercellular contacts, is still controversial. Combining theoretical modeling with in vitro observations, we investigate the collective spreading behavior of colonies of human cancer cells (T24). The spreading of these colonies is driven by stochastic single-cell migration with frequent transient cell-cell contacts. We find that inhibition of E- and N-cadherin junctions decreases colony spreading and average spreading velocities, without affecting the strength of correlations in spreading velocities of neighboring cells. Based on a biophysical simulation model for cell migration, we show that the behavioral changes upon disruption of these junctions can be explained by reduced repulsive excluded volume interactions between cells. This suggests that in cancer cell migration, cadherin-based intercellular contacts sharpen cell boundaries leading to repulsive rather than cohesive interactions between cells, thereby promoting efficient cell spreading during collective migration.


Assuntos
Caderinas , Neoplasias , Adesão Celular , Comunicação Celular , Movimento Celular , Proliferação de Células , Humanos
6.
Nat Commun ; 12(1): 4118, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-34226542

RESUMO

Living cells actively migrate in their environment to perform key biological functions-from unicellular organisms looking for food to single cells such as fibroblasts, leukocytes or cancer cells that can shape, patrol or invade tissues. Cell migration results from complex intracellular processes that enable cell self-propulsion, and has been shown to also integrate various chemical or physical extracellular signals. While it is established that cells can modify their environment by depositing biochemical signals or mechanically remodelling the extracellular matrix, the impact of such self-induced environmental perturbations on cell trajectories at various scales remains unexplored. Here, we show that cells can retrieve their path: by confining motile cells on 1D and 2D micropatterned surfaces, we demonstrate that they leave long-lived physicochemical footprints along their way, which determine their future path. On this basis, we argue that cell trajectories belong to the general class of self-interacting random walks, and show that self-interactions can rule large scale exploration by inducing long-lived ageing, subdiffusion and anomalous first-passage statistics. Altogether, our joint experimental and theoretical approach points to a generic coupling between motile cells and their environment, which endows cells with a spatial memory of their path and can dramatically change their space exploration.


Assuntos
Movimento Celular/fisiologia , Memória Espacial/fisiologia , Células CACO-2 , Simulação por Computador , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Modelos Biológicos , RNA Interferente Pequeno
7.
Nat Commun ; 12(1): 2226, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850145

RESUMO

At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.


Assuntos
Endossomos/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Células Epiteliais/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Actomiosina/metabolismo , Células CACO-2 , Movimento Celular/fisiologia , Polaridade Celular , Forma Celular , Células HeLa , Humanos , Miosina Tipo II/metabolismo , Fibras de Estresse/metabolismo
8.
Nat Phys ; 16(7): 802-809, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32641972

RESUMO

The directed migration of cell collectives is essential in various physiological processes, such as epiboly, intestinal epithelial turnover, and convergent extension during morphogenesis as well as during pathological events like wound healing and cancer metastasis. Collective cell migration leads to the emergence of coordinated movements over multiple cells. Our current understanding emphasizes that these movements are mainly driven by large-scale transmission of signals through adherens junctions. In this study, we show that collective movements of epithelial cells can be triggered by polarity signals at the single cell level through the establishment of coordinated lamellipodial protrusions. We designed a minimalistic model system to generate one-dimensional epithelial trains confined in ring shaped patterns that recapitulate rotational movements observed in vitro in cellular monolayers and in vivo in genitalia or follicular cell rotation. Using our system, we demonstrated that cells follow coordinated rotational movements after the establishment of directed Rac1-dependent polarity over the entire monolayer. Our experimental and numerical approaches show that the maintenance of coordinated migration requires the acquisition of a front-back polarity within each single cell but does not require the maintenance of cell-cell junctions. Taken together, these unexpected findings demonstrate that collective cell dynamics in closed environments as observed in multiple in vitro and in vivo situations can arise from single cell behavior through a sustained memory of cell polarity.

9.
Elife ; 82019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31486768

RESUMO

Adherens junction (AJ) assembly under force is essential for many biological processes like epithelial monolayer bending, collective cell migration, cell extrusion and wound healing. The acto-myosin cytoskeleton acts as a major force-generator during the de novo formation and remodeling of AJ. Here, we investigated the role of non-muscle myosin II isoforms (NMIIA and NMIIB) in epithelial junction assembly. NMIIA and NMIIB differentially regulate biogenesis of AJ through association with distinct actin networks. Analysis of junction dynamics, actin organization, and mechanical forces of control and knockdown cells for myosins revealed that NMIIA provides the mechanical tugging force necessary for cell-cell junction reinforcement and maintenance. NMIIB is involved in E-cadherin clustering, maintenance of a branched actin layer connecting E-cadherin complexes and perijunctional actin fibres leading to the building-up of anisotropic stress. These data reveal unanticipated complementary functions of NMIIA and NMIIB in the biogenesis and integrity of AJ.


Assuntos
Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Animais , Antígenos CD/metabolismo , Caderinas/metabolismo , Linhagem Celular , Cães , Humanos , Ligação Proteica
10.
Biophys J ; 117(3): 464-478, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31307676

RESUMO

Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large-scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modeling, we describe a form of collective oscillations in confined epithelial tissues in which the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micropatterns of varying shapes and sizes and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger osillatory mechanotransduction of YAP within cells, potentially affecting a wide range of cellular processes.


Assuntos
Movimento Celular , Células Epiteliais/citologia , Actinas/metabolismo , Animais , Fenômenos Biomecânicos , Células CACO-2 , Adesão Celular , Simulação por Computador , Cães , Proteínas de Fluorescência Verde/metabolismo , Humanos , Queratinócitos/citologia , Células Madin Darby de Rim Canino , Mecanotransdução Celular , Modelos Biológicos
11.
Biophys J ; 115(9): 1808-1816, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301513

RESUMO

Although mechanical cues are crucial to tissue morphogenesis and development, the tissue mechanical stress field remains poorly characterized. Given traction force time-lapse movies, as obtained by traction force microscopy of in vitro cellular sheets, we show that the tissue stress field can be estimated by Kalman filtering. After validation using numerical data, we apply Kalman inversion stress microscopy to experimental data. We combine the inferred stress field with velocity and cell-shape measurements to quantify the rheology of epithelial cell monolayers in physiological conditions, found to be close to that of an elastic and active material.


Assuntos
Microscopia , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Cães , Células Madin Darby de Rim Canino
12.
J R Soc Interface ; 15(140)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29563247

RESUMO

The capacity of living cells to sense their population density and to migrate accordingly is essential for the regulation of many physiological processes. However, the mechanisms used to achieve such functions are poorly known. Here, based on the analysis of multiple trajectories of vegetative Dictyostelium discoideum cells, we investigate such a system extensively. We show that the cells secrete a high-molecular-weight quorum-sensing factor (QSF) in their medium. This extracellular signal induces, in turn, a reduction of the cell movements, in particular, through the downregulation of a mode of motility with high persistence time. This response appears independent of cAMP and involves a G-protein-dependent pathway. Using a mathematical analysis of the cells' response function, we evidence a negative feedback on the QSF secretion, which unveils a powerful generic mechanism for the cells to detect when they exceed a density threshold. Altogether, our results provide a comprehensive and dynamical view of this system enabling cells in a scattered population to adapt their motion to their neighbours without physical contact.


Assuntos
AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Percepção de Quorum/fisiologia , Transdução de Sinais/fisiologia
13.
Phys Biol ; 14(3): 035001, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28467320

RESUMO

Monolayer expansion has generated great interest as a model system to study collective cell migration. During such an expansion the culture front often develops 'fingers', which we have recently modeled using a proposed feedback between the curvature of the monolayer's leading edge and the outward motility of the edge cells. We show that this model is able to explain the puzzling observed increase of collective cellular migration speed of a monolayer expanding into thin stripes, as well as describe the behavior within different confining geometries that were recently observed in experiments. These comparisons give support to the model and emphasize the role played by the edge cells and the edge shape during collective cell motion.


Assuntos
Movimento Celular , Extensões da Superfície Celular/fisiologia , Modelos Biológicos , Animais , Fenômenos Biomecânicos , Técnicas de Cultura de Células , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...