Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 82: 102657, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37467527

RESUMO

The final two steps of tryptophan biosynthesis are catalyzed by the enzyme tryptophan synthase (TS), composed of alpha (αTS) and beta (ßTS) subunits. Recently, experimental and computational methods have mapped "allosteric networks" that connect the αTS and ßTS active sites. In αTS, allosteric networks change across the catalytic cycle, which might help drive the conformational changes associated with its function. Directed evolution studies to increase catalytic function and expand the substrate profile of stand-alone ßTS have also revealed the importance of αTS in modulating the conformational changes in ßTS. These studies also serve as a foundation for the development of TS inhibitors, which can find utility against Mycobacterium tuberculosis and other bacterial pathogens.


Assuntos
Triptofano Sintase , Triptofano Sintase/química , Triptofano Sintase/metabolismo , Modelos Moleculares , Catálise , Regulação Alostérica
2.
Front Mol Biosci ; 8: 679915, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34124159

RESUMO

Networks of noncovalent amino acid interactions propagate allosteric signals throughout proteins. Tryptophan synthase (TS) is an allosterically controlled bienzyme in which the indole product of the alpha subunit (αTS) is transferred through a 25 Å hydrophobic tunnel to the active site of the beta subunit (ßTS). Previous nuclear magnetic resonance and molecular dynamics simulations identified allosteric networks in αTS important for its function. We show here that substitution of a distant, surface-exposed network residue in αTS enhances tryptophan production, not by activating αTS function, but through dynamically controlling the opening of the indole channel and stimulating ßTS activity. While stimulation is modest, the substitution also enhances cell growth in a tryptophan-auxotrophic strain of Escherichia coli compared to complementation with wild-type αTS, emphasizing the biological importance of the network. Surface-exposed networks provide new opportunities in allosteric drug design and protein engineering, and hint at potential information conduits through which the functions of a metabolon or even larger proteome might be coordinated and regulated.

3.
Protein Sci ; 30(3): 543-557, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314435

RESUMO

Experimental observations of enzymes under active turnover conditions have brought new insight into the role of protein motions and allosteric networks in catalysis. Many of these studies characterize enzymes under dynamic chemical equilibrium conditions, in which the enzyme is actively catalyzing both the forward and reverse reactions during data acquisition. We have previously analyzed conformational dynamics and allosteric networks of the alpha subunit of tryptophan synthase under such conditions using NMR. We have proposed that this working state represents a four to one ratio of the enzyme bound with the indole-3-glycerol phosphate substrate (E:IGP) to the enzyme bound with the products indole and glyceraldehyde-3-phosphate (E:indole:G3P). Here, we analyze the inactive D60N variant to deconvolute the contributions of the substrate- and products-bound states to the working state. While the D60N substitution itself induces small structural and dynamic changes, the D60N E:IGP and E:indole:G3P states cannot entirely account for the conformational dynamics and allosteric networks present in the working state. The act of chemical bond breakage and/or formation, or possibly the generation of an intermediate, may alter the structure and dynamics present in the working state. As the enzyme transitions from the substrate-bound to the products-bound state, millisecond conformational exchange processes are quenched and new allosteric connections are made between the alpha active site and the surface which interfaces with the beta subunit. The structural ordering of the enzyme and these new allosteric connections may be important in coordinating the channeling of the indole product into the beta subunit.


Assuntos
Triptofano Sintase , Regulação Alostérica/genética , Catálise , Domínio Catalítico/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glicerofosfatos/química , Glicerofosfatos/metabolismo , Indóis/química , Indóis/metabolismo , Conformação Proteica , Triptofano Sintase/química , Triptofano Sintase/genética , Triptofano Sintase/metabolismo
4.
Bioessays ; 42(9): e2000092, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32720327

RESUMO

A general framework by which dynamic interactions within a protein will promote the necessary series of structural changes, or "conformational cycle," required for function is proposed. It is suggested that the free-energy landscape of a protein is biased toward this conformational cycle. Fluctuations into higher energy, although thermally accessible, conformations drive the conformational cycle forward. The amino acid interaction network is defined as those intraprotein interactions that contribute most to the free-energy landscape. Some network connections are consistent in every structural state, while others periodically change their interaction strength according to the conformational cycle. It is reviewed here that structural transitions change these periodic network connections, which then predisposes the protein toward the next set of network changes, and hence the next structural change. These concepts are illustrated by recent work on tryptophan synthase. Disruption of these dynamic connections may lead to aberrant protein function and disease states.


Assuntos
Triptofano Sintase , Regulação Alostérica , Aminoácidos , Catálise , Conformação Proteica , Triptofano , Triptofano Sintase/metabolismo
5.
Adv Exp Med Biol ; 1163: 359-384, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707711

RESUMO

Our ability to engineer protein structure and function has grown dramatically over recent years. Perhaps the next level in protein design is to develop proteins whose function can be regulated in response to various stimuli, including ligand binding, pH changes, and light. Endeavors toward these goals have tested and expanded on our understanding of protein function and allosteric regulation. In this chapter, we provide examples from different methods for developing new allosterically regulated proteins. These methods range from whole insertion of regulatory domains into new host proteins, to covalent attachment of photoswitches to generate light-responsive proteins, and to targeted changes to specific amino acid residues, especially to residues identified to be important for relaying allosteric information across the protein framework. Many of the examples we discuss have already found practical use in medical and biotechnology applications.


Assuntos
Engenharia de Proteínas , Proteínas , Regulação Alostérica , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Engenharia de Proteínas/tendências , Proteínas/química
6.
Structure ; 27(9): 1405-1415.e5, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31257109

RESUMO

Networks of noncovalent interactions are important for protein structural dynamics. We used nuclear magnetic resonance chemical shift covariance analyses on an inactive variant of the alpha subunit of tryptophan synthase to map amino acid interaction networks across its catalytic cycle. Although some network connections were common to every enzyme state, many of the network connections strengthened or weakened over the catalytic cycle; these changes were highly coordinated. These results suggest a higher level of network organization. Our analyses identified periodic, second-order networks that show highly coordinated interaction changes across the catalytic cycle. These periodic networks may help synchronize the sequence of structural transitions necessary for enzyme function. Molecular dynamics simulations identified interaction changes across the catalytic cycle, including those involving the catalytic residue Glu49, which may help drive other interaction changes throughout the enzyme structure. Similar periodic networks may direct structural transitions and allosteric interactions in other proteins.


Assuntos
Salmonella typhimurium/enzimologia , Triptofano Sintase/química , Sítio Alostérico , Proteínas de Bactérias/química , Catálise , Domínio Catalítico , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica
7.
Front Mol Biosci ; 5: 92, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467546

RESUMO

Tryptophan synthase is a model system for understanding allosteric regulation within enzyme complexes. Amino acid interaction networks were previously delineated in the isolated alpha subunit (αTS) in the absence of the beta subunit (ßTS). The amino acid interaction networks were different between the ligand-free enzyme and the enzyme actively catalyzing turnover. Previous X-ray crystallography studies indicated only minor localized changes when ligands bind αTS, and so, structural changes alone could not explain the changes to the amino acid interaction networks. We hypothesized that the network changes could instead be related to changes in conformational dynamics. As such, we conducted nuclear magnetic resonance relaxation studies on different substrate- and products-bound complexes of αTS. Specifically, we collected 15N R2 relaxation dispersion data that reports on microsecond-to-millisecond timescale motion of backbone amide groups. These experiments indicated that there are conformational exchange events throughout αTS. Substrate and product binding change specific motional pathways throughout the enzyme, and these pathways connect the previously identified network residues. These pathways reach the αTS/ßTS binding interface, suggesting that the identified dynamic networks may also be important for communication with the ßTS subunit.

8.
Protein Sci ; 27(4): 825-838, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29380452

RESUMO

Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.


Assuntos
Enzimas/química , Enzimas/metabolismo , Engenharia de Proteínas/métodos , Enzimas/genética , Modelos Moleculares , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...