Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Onco Targets Ther ; 16: 371-383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37309471

RESUMO

MYC can be considered to be one of the most pressing and important targets for the development of novel anti-cancer therapies. This is due to its frequent dysregulation in tumors and due to the wide-ranging impact this dysregulation has on gene expression and cellular behavior. As a result, there have been numerous attempts to target MYC over the last few decades, both directly and indirectly, with mixed results. This article reviews the biology of MYC in the context of cancers and drug development. It discusses strategies aimed at targeting MYC directly, including those aimed at reducing its expression and blocking its function. In addition, the impact of MYC dysregulation on cellular biology is outlined, and how understanding this can underpin the development of approaches aimed at molecules and pathways regulated by MYC. In particular, the review focuses on the role that MYC plays in the regulation of metabolism, and the therapeutic avenues offered by inhibiting the metabolic pathways that are essential for the survival of MYC-transformed cells.

3.
Cancers (Basel) ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36428647

RESUMO

There have been significant recent advances in the understanding of the role of metabolism in normal and malignant B-cell biology. Previous research has focused on the role of MYC and mammalian target of rapamycin (mTOR) and how these interact with B-cell receptor signaling and hypoxia to regulate glycolysis, glutaminolysis, oxidative phosphorylation (OXPHOS) and related metabolic pathways in germinal centers. Many of the commonest forms of lymphoma arise from germinal center B-cells, reflecting the physiological attenuation of normal DNA damage checkpoints to facilitate somatic hypermutation of the immunoglobulin genes. As a result, these lymphomas can inherit the metabolic state of their cell-of-origin. There is increasing interest in the potential of targeting metabolic pathways for anti-cancer therapy. Some metabolic inhibitors such as methotrexate have been used to treat lymphoma for decades, with several new agents being recently licensed such as inhibitors of phosphoinositide-3-kinase. Several other inhibitors are in development including those blocking mTOR, glutaminase, OXPHOS and monocarboxylate transporters. In addition, recent work has highlighted the importance of the interaction between diet and cancer, with particular focus on dietary modifications that restrict carbohydrates and specific amino acids. This article will review the current state of this field and discuss future developments.

4.
Hemasphere ; 6(6): e722, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35747847

RESUMO

It has been unclear what role metabolism is playing in the pathophysiology of chronic lymphocytic leukemia (CLL). One reason is that the study of CLL metabolism is challenging due to the resting nature of circulating CLL cells. Also, it is not clear if any of the genomic aberrations observed in this disease have any impact on metabolism. Here, we demonstrate that CLL cells in proliferation centers exhibit upregulation of several molecules involved in glycolysis and mitochondrial metabolism. Comparison of CXCR4/CD5 intraclonal cell subpopulations showed that these changes are paralleled by increases in the metabolic activity of the CXCR4lowCD5high fraction that have recently egressed from the lymph nodes. Notably, anti-IgM stimulation of CLL cells recapitulates many of these metabolic alterations, including increased glucose uptake, increased lactate production, induction of glycolytic enzymes, and increased respiratory reserve. Treatment of CLL cells with inhibitors of B-cell receptor (BCR) signaling blocked these anti-IgM-induced changes in vitro, which was mirrored by decreases in hexokinase 2 expression in CLL cells from ibrutinib-treated patients in vivo. Interestingly, several samples from patients with 17p-deletion manifested increased spontaneous aerobic glycolysis in the unstimulated state suggestive of a BCR-independent metabolic phenotype. We conclude that the proliferative fraction of CLL cells found in lymphoid tissues or the peripheral blood of CLL patients exhibit increased metabolic activity when compared with the bulk CLL-cell population. Although this is due to microenvironmental stimulatory signals such as BCR-engagement in most cases, increases in resting metabolic activity can be observed in cases with 17p-deletion.

5.
Blood Adv ; 6(18): 5494-5504, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35640238

RESUMO

Chronic lymphocytic leukemia (CLL) cells have variably low surface IgM (sIgM) levels/signaling capacity, influenced by chronic antigen engagement at tissue sites. Within these low levels, CLL with relatively high sIgM (CLLhigh) progresses more rapidly than CLL with low sIgM (CLLlow). During ibrutinib therapy, surviving CLL cells redistribute into the peripheral blood and can recover sIgM expression. Return of CLL cells to tissue may eventually recur, where cells with high sIgM could promote tumor growth. We analyzed time to new treatment (TTNT) following ibrutinib in 70 patients with CLL (median follow-up of 66 months) and correlated it with pretreatment sIgM levels and signaling characteristics. Pretreatment sIgM levels correlated with signaling capacity, as measured by intracellular Ca2+ mobilization (iCa2+), in vitro (r = 0.70; P < .0001). High sIgM levels/signaling strongly correlated with short TTNT (P < .05), and 36% of patients with CLLhigh vs 8% of patients with CLLlow progressed to require a new treatment. In vitro, capacity of ibrutinib to inhibit sIgM-mediated signaling inversely correlated with pretherapy sIgM levels (r = -0.68; P = .01) or iCa2+ (r = -0.71; P = .009). In patients, sIgM-mediated iCa2+ and ERK phosphorylation levels were reduced by ibrutinib therapy but not abolished. The residual signaling capacity downstream of BTK was associated with high expression of sIgM, whereas it was minimal when sIgM expression was low (P < .05). These results suggested that high sIgM levels facilitated CLL cell resistance to ibrutinib in patients. The CLL cells, surviving in the periphery with high sIgM expression, include a dangerous fraction that is able to migrate to tissue and receive proliferative stimuli, which may require targeting by combined approaches.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Cálcio , Humanos , Imunoglobulina M , Leucemia Linfocítica Crônica de Células B/metabolismo , Piperidinas
6.
J Clin Invest ; 132(9)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35316216

RESUMO

The synthesis of serine from glucose is a key metabolic pathway supporting cellular proliferation in healthy and malignant cells. Despite this, the role that this aspect of metabolism plays in germinal center biology and pathology is not known. Here, we performed a comprehensive characterization of the role of the serine synthesis pathway in germinal center B cells and lymphomas derived from these cells. We demonstrate that upregulation of a functional serine synthesis pathway is a metabolic hallmark of B cell activation and the germinal center reaction. Inhibition of phosphoglycerate dehydrogenase (PHGDH), the first and rate-limiting enzyme in this pathway, led to defective germinal formation and impaired high-affinity antibody production. In addition, overexpression of enzymes involved in serine synthesis was a characteristic of germinal center B cell-derived lymphomas, with high levels of expression being predictive of reduced overall survival in diffuse large B cell lymphoma. Inhibition of PHGDH induced apoptosis in lymphoma cells, reducing disease progression. These findings establish PHGDH as a critical player in humoral immunity and a clinically relevant target in lymphoma.


Assuntos
Linfoma de Células B , Linfoma , Proliferação de Células , Centro Germinativo , Humanos , Linfoma/genética , Linfoma de Células B/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Serina/metabolismo
7.
Clin Cancer Res ; 27(20): 5647-5659, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380642

RESUMO

PURPOSE: B-cell receptor (BCR) signaling is critical for the pathogenesis of chronic lymphocytic leukemia (CLL), promoting both malignant cell survival and disease progression. Although vital, understanding of the wider signaling network associated with malignant BCR stimulation is poor. This is relevant with respect to potential changes in response to therapy, particularly involving kinase inhibitors. In the current study, we describe a novel high-resolution approach to investigate BCR signaling in primary CLL cells and track the influence of therapy on signaling response. EXPERIMENTAL DESIGN: A kinobead/mass spectrometry-based protocol was used to study BCR signaling in primary CLL cells. Longitudinal analysis of samples donated by clinical trial patients was used to investigate the impact of chemoimmunotherapy and ibrutinib on signaling following surface IgM engagement. Complementary Nanostring and immunoblotting analysis was used to verify our findings. RESULTS: Our protocol isolated a unique, patient-specific signature of over 30 kinases from BCR-stimulated CLL cells. This signature was associated with 13 distinct Kyoto Encyclopedia of Genes and Genomes pathways and showed significant change in cells from treatment-naïve patients compared with those from patients who had previously undergone therapy. This change was validated by longitudinal analysis of clinical trials samples where BCR-induced kinome responses in CLL cells altered between baseline and disease progression in patients failing chemoimmunotherapy and between baseline and treatment in patients taking ibrutinib. CONCLUSIONS: These data comprise the first comprehensive proteomic investigation of the BCR signaling response within CLL cells and reveal unique evidence that these cells undergo adaptive reprogramming of this signaling in response to therapy.


Assuntos
Linfócitos B/fisiologia , Leucemia Linfocítica Crônica de Células B/etiologia , Leucemia Linfocítica Crônica de Células B/patologia , Transdução de Sinais/fisiologia , Técnicas Citológicas/métodos , Humanos , Microesferas , Inibidores de Proteínas Quinases , Células Tumorais Cultivadas
8.
Blood ; 138(5): 370-381, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-33786580

RESUMO

Loss-of-function mutations in KMT2D are a striking feature of germinal center (GC) lymphomas, resulting in decreased histone 3 lysine 4 (H3K4) methylation and altered gene expression. We hypothesized that inhibition of the KDM5 family, which demethylates H3K4me3/me2, would reestablish H3K4 methylation and restore the expression of genes repressed on loss of KMT2D. KDM5 inhibition increased H3K4me3 levels and caused an antiproliferative response in vitro, which was markedly greater in both endogenous and gene-edited KMT2D mutant diffuse large B-cell lymphoma cell lines, whereas tumor growth was inhibited in KMT2D mutant xenografts in vivo. KDM5 inhibition reactivated both KMT2D-dependent and -independent genes, resulting in diminished B-cell signaling and altered expression of B-cell lymphoma 2 (BCL2) family members, including BCL2 itself. KDM5 inhibition may offer an effective therapeutic strategy for ameliorating KMT2D loss-of-function mutations in GC lymphomas.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Mutação com Perda de Função , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Proteínas de Neoplasias/metabolismo , Proteína 2 de Ligação ao Retinoblastoma/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/genética , Humanos , Linfoma Difuso de Grandes Células B/enzimologia , Linfoma Difuso de Grandes Células B/genética , Camundongos , Proteínas de Neoplasias/genética , Proteína 2 de Ligação ao Retinoblastoma/genética , Proteína 2 de Ligação ao Retinoblastoma/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 25(8): 2503-2512, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30373751

RESUMO

PURPOSE: In chronic lymphocytic leukemia (CLL), disease progression associates with surface IgM (sIgM) levels and signaling capacity. These are variably downmodulated in vivo and recover in vitro, suggesting a reversible influence of tissue-located antigen. Therapeutic targeting of sIgM function via ibrutinib, an inhibitor of Bruton tyrosine kinase (BTK), causes inhibition and tumor cell redistribution into the blood, with significant clinical benefit. Circulating CLL cells persist in an inhibited state, offering a tool to investigate the effects of drug on BTK-inhibited sIgM. EXPERIMENTAL DESIGN: We investigated the consequences of ibrutinib therapy on levels and function of sIgM in circulating leukemic cells of patients with CLL. RESULTS: At week 1, there was a significant increase of sIgM expression (64% increase from pretherapy) on CLL cells either recently released from tissue or persisting in blood. In contrast, surface IgD (sIgD) and a range of other receptors did not change. SIgM levels remained higher than pretherapy in the following 3 months despite gradual cell size reduction and ongoing autophagy and apoptotic activity. Conversely, IgD and other receptors did not increase and gradually declined. Recovered sIgM was fully N-glycosylated, another feature of escape from antigen, and expression did not increase further during culture in vitro. The sIgM was fully capable of mediating phosphorylation of SYK, which lies upstream of BTK in the B-cell receptor pathway. CONCLUSIONS: This specific IgM increase in patients underpins the key role of tissue-based engagement with antigen in CLL, confirms the inhibitory action of ibrutinib, and reveals dynamic adaptability of CLL cells to precision monotherapy.See related commentary by Burger, p. 2372.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Humanos , Imunoglobulina M , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis , Pirimidinas
10.
Blood ; 128(6): 816-26, 2016 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-27301861

RESUMO

Chronic lymphocytic leukemia (CLL) with unmutated (U-CLL) or mutated (M-CLL) immunoglobulin gene heavy-chain variable region (IGHV) displays different states of anergy, indicated by reduced surface immunoglobulin M (sIgM) levels and signaling, consequent to chronic (super)antigen exposure. The subsets also differ in the incidence of high-risk genetic aberrations and in DNA methylation profile, preserved from the maturational status of the original cell. We focused on sIgM expression and function, measured as intracellular Ca(2+) mobilization following stimulation, and probed correlations with clinical outcome. The relationship with genetic features and maturation status defined by DNA methylation of an 18-gene panel signature was then investigated. sIgM levels/signaling were higher and less variable in U-CLL than in M-CLL and correlated with disease progression between and within U-CLL and M-CLL. In U-CLL, increased levels/signaling associated with +12, del(17p) or NOTCH1 mutations. In M-CLL, there were fewer genetic lesions, although the methylation maturation status, generally higher than in U-CLL, varied and was increased in cases with lower sIgM levels/signaling. These features revealed heterogeneity in M-CLL and U-CLL with clear clinical correlations. Multivariate analyses with phenotype, genetic lesions, or DNA methylation maturation status identified high sIgM levels as a new potential independent factor for disease progression. Multiple influences on sIgM include the cell of origin, the clonal history of antigen encounter in vivo, and genetic damage. This simple marker compiles these different factors into an indicator worthy of further investigations for prediction of clinical behavior, particularly within the heterogeneous M-CLL subset.


Assuntos
Metilação de DNA , Regulação Leucêmica da Expressão Gênica , Imunoglobulina M/genética , Leucemia Linfocítica Crônica de Células B/genética , Cálcio/metabolismo , Progressão da Doença , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Imunoglobulina M/análise , Imunoglobulina M/metabolismo , Região Variável de Imunoglobulina/genética , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Mutação , Receptor Notch1/genética
11.
PLoS One ; 9(9): e107916, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25233378

RESUMO

A hypomorphic Prep1 mutation results in embryonic lethality at late gestation with a pleiotropic embryonic phenotype that includes defects in all hematopoietic lineages. Reduced functionality of the hematopoietic stem cells (HSCs) compartment might be responsible for the hematopoietic phenotype observed at mid-gestation. In this paper we demonstrate that Prep1 regulates the number of HSCs in fetal livers (FLs), their clonogenic potential and their ability to de novo generate the hematopoietic system in ablated hosts. Furthermore, we show that Prep1 controls the self-renewal ability of the FL HSC compartment as demonstrated by serial transplantation experiments. The premature exhaustion of Prep1 mutant HSCs correlates with the reduced quiescent stem cell pool thus suggesting that Prep1 regulates the self-renewal ability by controlling the quiescence/proliferation balance. Finally, we show that in FL HSCs Prep1 absence induces the interferon signaling pathway leading to premature cycling and exhaustion of fetal HSCs.


Assuntos
Autorrenovação Celular , Células-Tronco Hematopoéticas/fisiologia , Proteínas de Homeodomínio/fisiologia , Animais , Apoptose , Ataxina-1/metabolismo , Sequência de Bases , Células Cultivadas , Transplante de Células-Tronco Hematopoéticas , Interferons/fisiologia , Fígado/citologia , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...