Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theriogenology ; 70(7): 1119-28, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18675451

RESUMO

The application of assisted reproductive technologies (ART) has been shown to induce changes in the methylation of the embryonic genome, leading to aberrant gene expression, including that of imprinted genes. Aberrant methylation and gene expression has been linked to the large offspring syndrome (LOS) in bovine embryos resulting in increased embryonic morbidity and mortality. In the bovine, limited numbers of imprinted genes have been studied and studies have primarily been restricted to pre-implantation stages. This study reports original data on the expression pattern of 8 putatively imprinted genes (Ata3, Dlk1, Gnas, Grb10, Magel2, Mest-1, Ndn and Sgce) in bovine peri-implantation embryos. Two embryonic developmental stages were examined, Day 14 and Day 21. The gene expression pattern of single embryos was recorded for in vivo, in vitro produced (IVP) and parthenogenetic embryos. The IVP embryos allow us to estimate the effect of in vitro procedures and the analysis of parthenogenetic embryos provides provisional information on maternal genomic imprinting. Among the 8 genes investigated, only Mest-1 showed differential expression in Day 21 parthenogenetic embryos compared to in vivo and IVP counterparts, indicating maternal imprinting of this gene. In addition, our expression analysis of single embryos revealed a more heterogeneous gene expression in IVP than in in vivo developed embryos, adding further to the hypothesis of transcriptional dysregulation induced by in vitro procedures, either by in vitro maturation, fertilization or culture. In conclusion, effects of genomic imprinting and of in vitro procedures for embryo production may influence the success of bovine embryo implantation.


Assuntos
Bovinos/embriologia , Implantação do Embrião/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Animais , Transferência Embrionária/veterinária , Fertilização in vitro/veterinária , Perfilação da Expressão Gênica , Impressão Genômica
2.
Soc Reprod Fertil Suppl ; 64: 341-63, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17491158

RESUMO

Preimplantation embryo development typically involves sequential morphological events connecting embryonic cleavage, morula compaction and blastocyst formation, and occurs in parallel with transcriptional regulation, specifically, the maternal to embryonic transition. The underlying homeostatic and metabolic mechanisms governing embryo development are influenced by both genetic and epigenetic factors that respond to environmental stimuli and may impact development during later gestational and fetal growth. There is a renewed interest in the identification and characterization of developmentally important genes during embryonic and fetal development. Perturbations in gene expression, resulting from environmental conditions, can have serious consequences on further embryonic development, homeostasis and disease pathogenesis. The bovine embryo is, however, capable of tolerating and adapting to a wide range of conditions, although little is known of the molecular fingerprint required for oocyte maturation, fertilization and development to term. The genomic revolution united with promising new technologies offer greater opportunity to elucidate the mechanisms behind this well-orchestrated biological process. This paper reviews the current literature on gene expression in the bovine embryo with reference to environmental interference and the development of new technologies to observe this biological process. Defining the difference in molecular signalling between in vivo and in vitro systems will undoubtedly improve the safety and efficiency of assisted reproductive technologies. The future challenge is to devise culture conditions that mimic the changing environment required by developing embryos to allow the correct temporal and spatial expression of a cohort of developmental genes in a manner similar to that seen in


Assuntos
Blastocisto/fisiologia , Bovinos/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência com Séries de Oligonucleotídeos , Animais , Clonagem de Organismos , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário/genética , Feminino , Oócitos/fisiologia , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...