Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 572: 408-420, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32272315

RESUMO

BACKGROUND AND AIM: Membranes for guided bone regeneration should have a mechanical structure and a chemical composition suitable for mimicking biological structures. In this work, we pursue the development of periosteum-inspired bilayered membranes obtained by crosslinking alginate with different amounts of nanohydroxyapatite. EXPERIMENTS: Alginate-nanohydroxyapatite interaction was studied by rheology and infrared spectroscopy measurements. The membranes were characterized regarding their tensile strength, degradation and surface morphology. Finally, cell cultures were performed on each side of the membranes. FINDINGS: The ionic bonding between alginate polysaccharide networks and nanohydroxyapatite was proven, and had a clear effect in the strength and microstructure of the hydrogels. Distinct surface characteristics were achieved on each side of the membranes, resulting in a highly porous fibrous side and a mineral-rich side with higher roughness and lower porosity. Moreover, the effect of amount of nanohydroxyapatite was reflected in a decrease of the membranes' plasticity and an increment of degradation rate. Finally, it was proved that osteoblast-like cells proliferated and differentiated on the mineral-rich side, specially when a higher amount of nanohydroxyapatite was used, whereas fibroblasts-like cells were able to proliferate on the fibrous side. These periosteum-inspired membranes are promising biomaterials for guided tissue regeneration applications.


Assuntos
Alginatos/química , Materiais Biomiméticos/química , Durapatita/química , Bicamadas Lipídicas/química , Nanopartículas/química , Periósteo/química , Diferenciação Celular , Células Cultivadas , Humanos , Osteoblastos/química , Osteoblastos/citologia , Tamanho da Partícula , Propriedades de Superfície
2.
Colloids Surf B Biointerfaces ; 175: 596-605, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30580150

RESUMO

Biomaterials are frequently evaluated for pro-coagulant activity but usually in the presence of microparticles (MPs), cell-derived vesicles in blood plasma whose phospholipid surfaces allow coagulation factors to set up as functional assemblies. We tested the hypothesis that synthetic anionic surfaces can catalyze burst thrombin activation in human blood plasma in the absence of MPs. In a thromboelastography (TEG) assay with plastic sample cups and pins, recalcified human citrated platelet-poor plasma spontaneously burst-coagulated but with an unpredictable clotting time whereas plasma depleted of MPs by ultracentrifugation failed to coagulate. Coagulation of MP-depleted plasma was restored in a dose-dependent manner by glass microbeads, hydroxyapatite nanoparticles (HA NPs), and carboxylic acid-containing anionic nanocoatings of TEG cups and pins (coated by glow-discharge plasma-polymerized ethylene containing oxygen, L-PPE:O with 4.4 and 6.8 atomic % [COOH]). Glass beads lost their pro-coagulant activity in MP-depleted plasma after their surfaces were nanocoated with hydrophobic plasma-polymerized hexamethyl disiloxane (PP-HMDSO). In FXII-depleted MP-depleted plasma, glass microbeads failed to induce coagulation, however, FXIa was sufficient to induce coagulation in a dose-dependent manner, with no effect of glass beads. These data suggest that anionic surfaces of crystalline, organic, and amorphous solid synthetic materials catalyze explosive thrombin generation in MP-depleted plasma by activating the FXII-dependent intrinsic contact pathway. The data also show that microparticles are pro-coagulant surfaces whose activity has been largely overlooked in many coagulation studies to-date. These results suggest a possible mechanism by which anionic biomaterial surfaces induce bone healing by contact osteogenesis, through fibrin clot formation in the absence of platelet activation.


Assuntos
Materiais Biocompatíveis/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Micropartículas Derivadas de Células/química , Durapatita/farmacologia , Nanopartículas/química , Siloxanas/farmacologia , Ânions , Materiais Biocompatíveis/química , Plaquetas/citologia , Plaquetas/efeitos dos fármacos , Durapatita/química , Fator XII/metabolismo , Vidro/química , Humanos , Membranas Artificiais , Siloxanas/química , Propriedades de Superfície , Tromboelastografia , Trombina/metabolismo
3.
ACS Appl Mater Interfaces ; 9(18): 15698-15710, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28426935

RESUMO

Ionic substitution can affect essential physicochemical properties leading to a specific biological behavior upon implantation. Therefore, it has been proposed as a tool to increase the biological efficiency of calcium phosphate based materials. In the following study, we have evaluated the contribution of an important cation in nature, Mg2+, into the structure of previously studied biocompatible and biodegradable hydroxyapatite (HA) nanorods and its subsequent effect on its chemical, morphology, and bone mimetic articulation. Mg2+-substituted HA samples were synthesized by an aqueous wet-chemical precipitation method, followed by an hydrothermal treatment involving a Mg2+ precursor that partially replace Ca2+ ions into HA crystal lattice; Mg2+ concentrations were modulated to obtain a nominal composition similar to that exists in calcified tissues. Hydrothermally synthesized Mg2+-substituted HA nanoparticles were characterized by X-ray powder diffraction, FT-NIR and EDX spectroscopies, field emission scanning and high resolution transmission electron microscopies (FE-SEM, H-TEM). Molecular modeling combining ab initio methods and power diffraction data were also performed. Results showed that Mg2+-substitution promoted the formation of calcium deficient HA (cdHA) where Mg2+ replacement is energetically favored at Ca(1) position in a limited and specific amount directing the additional Mg2+ toward the surface of the crystal. The control of Mg2+ incorporation into HA nanorods gave rise to a tailored crystallinity degree, cell parameters, morphology, surface hydration, solubility, and degradation properties in a dose-replacement dependent manner. The obtained materials show qualities that conjugated together to drive an optimal in vitro cellular viability, spreading, and proliferation confirming their biocompatibility. In addition, an improved adhesion of osteoblast was evidenced after Mg2+-Ca2+ substitution.

4.
J Colloid Interface Sci ; 494: 345-354, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28161505

RESUMO

The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO2) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating.


Assuntos
Osso e Ossos/química , Durapatita/química , Nanopartículas/química , Soroalbumina Bovina/química , Adsorção , Líquidos Corporais/química , Calcificação Fisiológica , Fosfatos de Cálcio/química , Humanos , Propriedades de Superfície , Titânio/química , Água/química
5.
Nanoscale ; 7(44): 18751-62, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26505580

RESUMO

Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.


Assuntos
Substitutos Ósseos , Materiais Revestidos Biocompatíveis , Colágeno Tipo I , Durapatita , Células-Tronco Mesenquimais/metabolismo , Nanotubos/química , Osteoblastos/metabolismo , Animais , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Colágeno Tipo I/química , Colágeno Tipo I/farmacologia , Durapatita/química , Durapatita/farmacologia , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Coelhos , Ratos
6.
ACS Appl Mater Interfaces ; 7(23): 12740-50, 2015 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-26013476

RESUMO

Nowadays, the use of polyhedral instead of spherical particles as building blocks of engineering new materials has become an area of particular effort in the scientific community. Therefore, fabricating in a reproducible manner large amounts of uniform crystal-like particles is a huge challenge. In this work we report a low reagent-consuming binary surfactant templated method mediated by a hydrothermal treatment as a facile and controllable route for the synthesis of crystal-like rombdodecahedral particles exhibiting SBA-16 mesoporosity. It was determined that the hydrothermal treatment conditions were a key point upon the final material morphology, surface area, microporosity, wall thickness, and mesopore width. As a consequence of their internal mesoporosity order, rhombic dodecahedral synthesized particles exhibited highly efficient ultraviolet absorptions and photoluminescence emissions at room temperature. Conducting experimental and theoretical comparative studies allowed us to infer that the presence of intrinsic defects confined into an ordered mesoporous structure plays a very important role in semiconductor materials. The information presented here is expected to be useful, giving new, accurate information, for the construction of novel technological devices.

7.
J Mater Chem B ; 2(7): 834-845, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32261315

RESUMO

Controlling aligned fiber micro-architectures to simulate the extracellular matrix for inducing important biological functions is a key challenge with regard to successful tissue regeneration. Here we present a bottom-up microemulsion-mediated strategy to obtain highly bioactive and biocompatible, striped Ce-TiO2 nano-crystalline superstructures with ONOO- scavenging activity. The employment of a bulkier organic ceria precursor in the material synthesis has several concurrent effects: (I) influencing the interfacial microemulsion droplet elasticity to create an aligned distribution of prismatic anatase nanoparticles causing the final lined morphology, (II) stabilizing the anatase active phase in a fine dispersed state and improving its resistance to the thermal anatase-rutile conversion, (III) indirectly favoring the rapid formation on the material surface of a hydroxyapatite layer composed of sphere-like globules of 3-5 µm in diameter essential for bone-bonding, and finally (IV) accelerating the ONOO- degradation into less harmful species NO2 - and O2.

8.
Biochim Biophys Acta ; 1830(11): 5014-26, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23891938

RESUMO

BACKGROUND: Nano-hydroxyapatite particles have better bioactivity than the coarse crystals. So, they can be utilized for engineered tissue implants with improved efficiency over other materials. The development of materials with specific bioactive characteristics is still under investigation. METHODS: The surface properties of four hydroxyapatite materials templated by different micelle-polymer structured network are studied. The synergistic interaction of each block copolymer in contact with CTAB rod-like micelles results in crystalline HAp nano-rods of 25-50nm length organized in hierarchical structures with different micro-rough characteristics. RESULTS: It was observed that the material in vitro bioactivity strongly depends on the surface structure while in a minor extent on their Ca/P ratio. So, MIII and MIV materials with Skewness parameter Rsk>2.62 favored the formation on their surfaces of net-like phase with a high growth kinetic constant; while MI and MII (Rsk≤2.62) induced the appearance of spherulitic-like structures and a growth rate 1.75 times inferior. Material biocompatibility was confirmed by interaction with rat calvarial osteoblasts. CONCLUSIONS: The different structures growth is attributed to a dissimilar matching of crystal planes in the material and the apatite layer formed. In specific synthesis conditions, a biocompatible material with a Ca/P ratio close to that for the trabecular bone and a morphology that are considered essential for bone-bonding was obtained. GENERAL SIGNIFICANCE: The creation of implantable devices with a specific bioactive characteristic may be useful to manipulate the attachment of cells on mineral coating directly affecting the stability and life of the implant.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Durapatita/química , Durapatita/farmacologia , Nanotubos/química , Animais , Células Cultivadas , Cinética , Micelas , Osteoblastos/efeitos dos fármacos , Polímeros/química , Polímeros/farmacologia , Ratos , Relação Estrutura-Atividade , Propriedades de Superfície , Engenharia Tecidual/métodos
9.
Dalton Trans ; 42(22): 7991-8000, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23467671

RESUMO

Semiconductor nanocrystals and nanostructures have been extensively studied in the last few years due to their interesting optical and optoelectronic properties. Nevertheless, combining precise photoluminescence properties with controlled morphologies of SiO2 is a major hurdle for a broad range of basic research and technological applications. Here, we demonstrate that microemulsion droplet interfacial elasticity can be manipulated to induce definite morphologies associated with specific intrinsic and extrinsic photoluminescent defects in the silica matrix. Thus, under precise experimental conditions hollow crystalline and compact amorphous SiO2 spheres showing ultraviolet-photoluminescence and helicoidal fibrils of Ce-doped amorphous silica with violet-blue emissions are obtained. Overall, it is demonstrated that the combination of microemulsions and doping represents an easy strategy for the design of specific nanoscale structures with high efficiency photoluminescence. The detailed structural analysis provided in the present work is expected to be useful as accurate information on assessment of technological nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...