Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Cell Rep ; 42(11): 113448, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37967010

RESUMO

CD4+ T cells are key components of the immune response during lung infections and can mediate protection against tuberculosis (TB) or influenza. However, CD4+ T cells can also promote lung pathology during these infections, making it unclear how these cells control such discrepant effects. Using mouse models of hypervirulent TB and influenza, we observe that exaggerated accumulation of parenchymal CD4+ T cells promotes lung damage. Low numbers of lung CD4+ T cells, in contrast, are sufficient to protect against hypervirulent TB. In both situations, lung CD4+ T cell accumulation is mediated by CD4+ T cell-specific expression of the extracellular ATP (eATP) receptor P2RX7. P2RX7 upregulation in lung CD4+ T cells promotes expression of the chemokine receptor CXCR3, favoring parenchymal CD4+ T cell accumulation. Our findings suggest that direct sensing of lung eATP by CD4+ T cells is critical to induce tissue CD4+ T cell accumulation and pathology during lung infections.


Assuntos
Influenza Humana , Tuberculose , Animais , Humanos , Camundongos , Linfócitos T CD4-Positivos , Influenza Humana/metabolismo , Pulmão/patologia , Receptores de Quimiocinas/metabolismo , Tuberculose/patologia
2.
Front Immunol ; 14: 1140426, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36993971

RESUMO

Introduction: This study provides evidence of how Th1 cell metabolism is modulated by the purinergic receptor P2X7 (P2RX7), a cation cannel activated by high extracellular concentrations of adenosine triphosphate (ATP). Methods: In vivo analysis was performed in the Plasmodium chabaudi model of malaria in view of the great relevance of this infectious disease for human health, as well as the availability of data concerning Th1/Tfh differentiation. Results: We show that P2RX7 induces T-bet expression and aerobic glycolysis in splenic CD4+ T cells that respond to malaria, at a time prior to Th1/Tfh polarization. Cell-intrinsic P2RX7 signaling sustains the glycolytic pathway and causes bioenergetic mitochondrial stress in activated CD4+ T cells. We also show in vitro the phenotypic similarities of Th1-conditioned CD4+ T cells that do not express P2RX7 and those in which the glycolytic pathway is pharmacologically inhibited. In addition, in vitro ATP synthase blockade and the consequent inhibition of oxidative phosphorylation, which drives cellular metabolism for aerobic glycolysis, is sufficient to promote rapid CD4+ T cell proliferation and polarization to the Th1 profile in the absence of P2RX7. Conclusion: These data demonstrate that P2RX7-mediated metabolic reprograming for aerobic glycolysis is a key event for Th1 differentiation and suggest that ATP synthase inhibition is a downstream effect of P2RX7 signaling that potentiates the Th1 response.


Assuntos
Glicólise , Malária , Receptores Purinérgicos P2X7 , Células Th1 , Animais , Camundongos , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7/metabolismo , Células Th1/citologia , Células Th1/metabolismo , Diferenciação Celular , Plasmodium chabaudi , Malária/imunologia , Trifosfato de Adenosina , Adenosina Trifosfatases , Mitocôndrias/metabolismo , Proteínas com Domínio T/metabolismo , Fosforilação Oxidativa , Transdução de Sinais , Células Cultivadas
3.
Vaccines (Basel) ; 10(8)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-36016134

RESUMO

Neonates have a limited adaptive response of plasma cells, germinal center (GC) B cells, and T follicular helper cells (TFH). As neonatal vaccination can be an important tool for AIDS prevention, these limitations need to be overcome. Chimeric DNA vaccine encoding p55Gag HIV-1 protein conjugated with lysosomal-associated membrane protein 1 (LAMP-1) has been described as immunogenic in the neonate period. Herein, we investigated the immunologic mechanisms involved in neonatal immunization with a LAMP-1/p55Gag (LAMP/Gag) DNA vaccine in a C57BL/6 mouse background. Neonatal LAMP/Gag vaccination induced strong Gag-specific T-cell response until adulthood and elevated levels of anti-Gag IgG antibodies. We also demonstrated for the first time that the immunogenicity of the neonatal period with LAMP/Gag is due to the induction of high-affinity anti-p24 IgG antibodies and long-term plasma cells. Together with that, there is the generation of early TFH cells and the formation of GC sites with the upregulation of activation-induced cytidine deaminase (AID) enzyme mRNA and protein expression in draining lymph nodes after neonatal LAMP/Gag vaccination. These findings underscore that the LAMP-1 strategy in the chimeric vaccine could be useful to enhance antibody production even in the face of neonatal immaturity, and they contribute to the development of new vaccine approaches for other emerging pathogens at an early stage of life.

4.
J Neurochem ; 163(2): 113-132, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35880385

RESUMO

COVID-19 causes more than million deaths worldwide. Although much is understood about the immunopathogenesis of the lung disease, a lot remains to be known on the neurological impact of COVID-19. Here, we evaluated immunometabolic changes using astrocytes in vitro and dissected brain areas of SARS-CoV-2 infected Syrian hamsters. We show that SARS-CoV-2 alters proteins of carbon metabolism, glycolysis, and synaptic transmission, many of which are altered in neurological diseases. Real-time respirometry evidenced hyperactivation of glycolysis, further confirmed by metabolomics, with intense consumption of glucose, pyruvate, glutamine, and alpha ketoglutarate. Consistent with glutamine reduction, the blockade of glutaminolysis impaired viral replication and inflammatory response in vitro. SARS-CoV-2 was detected in vivo in hippocampus, cortex, and olfactory bulb of intranasally infected animals. Our data evidence an imbalance in important metabolic molecules and neurotransmitters in infected astrocytes. We suggest this may correlate with the neurological impairment observed during COVID-19, as memory loss, confusion, and cognitive impairment.


Assuntos
COVID-19 , Animais , Astrócitos , Carbono , Cricetinae , Modelos Animais de Doenças , Glucose , Glutamina , Ácidos Cetoglutáricos , Mesocricetus , Piruvatos , SARS-CoV-2
6.
Cell Death Dis ; 13(2): 144, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145061

RESUMO

Malaria is an enormous burden on global health that caused 409,000 deaths in 2019. Severe malaria can manifest in the lungs, an illness known as acute respiratory distress syndrome (ARDS). Not much is known about the development of malaria-associated ARDS (MA-ARDS), especially regarding cell death in the lungs. We had previously established a murine model that mimics various human ARDS aspects, such as pulmonary edema, hemorrhages, pleural effusion, and hypoxemia, using DBA/2 mice infected with Plasmodium berghei ANKA. Here, we explored the mechanisms and the involvement of apoptosis in this syndrome. We found that apoptosis contributes to the pathogenesis of MA-ARDS, primarily as facilitators of the alveolar-capillary barrier breakdown. The protection of pulmonary endothelium by inhibiting caspase activation could be a promising therapeutic strategy to prevent the pathogenicity of MA-ARDS. Therefore, intervention in the programmed death cell mechanism could help patients not to develop severe malaria.


Assuntos
Malária , Síndrome do Desconforto Respiratório , Animais , Caspases/metabolismo , Modelos Animais de Doenças , Humanos , Pulmão/metabolismo , Malária/complicações , Malária/metabolismo , Camundongos , Camundongos Endogâmicos DBA
8.
Cell Death Dis ; 12(7): 692, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34247195

RESUMO

Chagas disease is a life-threatening disorder caused by the protozoan parasite Trypanosoma cruzi. Parasite-specific antibodies, CD8+ T cells, as well as IFN-γ and nitric oxide (NO) are key elements of the adaptive and innate immunity against the extracellular and intracellular forms of the parasite. Bim is a potent pro-apoptotic member of the Bcl-2 family implicated in different aspects of the immune regulation, such as negative selection of self-reactive thymocytes and elimination of antigen-specific T cells at the end of an immune response. Interestingly, the role of Bim during infections remains largely unidentified. To explore the role of Bim in Chagas disease, we infected WT, Bim+/-, Bim-/- mice with trypomastigotes forms of the Y strain of T. cruzi. Strikingly, our data revealed that Bim-/- mice exhibit a delay in the development of parasitemia followed by a deficiency in the control of parasite load in the bloodstream and a decreased survival compared to WT and Bim+/- mice. At the peak of parasitemia, peritoneal macrophages of Bim-/- mice exhibit decreased NO production, which correlated with a decrease in the pro-inflammatory Small Peritoneal Macrophage (SPM) subset. A similar reduction in NO secretion, as well as in the pro-inflammatory cytokines IFN-γ and IL-6, was also observed in Bim-/- splenocytes. Moreover, an impaired anti-T. cruzi CD8+ T-cell response was found in Bim-/- mice at this time point. Taken together, our results suggest that these alterations may contribute to the establishment of a delayed yet enlarged parasitic load observed at day 9 after infection of Bim-/- mice and place Bim as an important protein in the control of T. cruzi infections.


Assuntos
Proteína 11 Semelhante a Bcl-2/deficiência , Doença de Chagas/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Proteína 11 Semelhante a Bcl-2/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/parasitologia , Células Cultivadas , Doença de Chagas/genética , Doença de Chagas/imunologia , Doença de Chagas/metabolismo , Modelos Animais de Doenças , Feminino , Interações Hospedeiro-Parasita , Interferon gama/metabolismo , Interleucina-6/metabolismo , Macrófagos Peritoneais/imunologia , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Carga Parasitária , Baço/imunologia , Baço/metabolismo , Baço/parasitologia , Fatores de Tempo , Trypanosoma cruzi/imunologia
9.
Front Cell Infect Microbiol ; 11: 672472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34026666

RESUMO

The risk of developing severe forms of tuberculosis has increased by the acquired immunodeficiency syndrome (AIDS) epidemic, lack of effective drugs to eliminate latent infection and the emergence of drug-resistant mycobacterial strains. Excessive inflammatory response and tissue damage associated with severe tuberculosis contribute to poor outcome of the disease. Our previous studies using mice deficient in the ATP-gated ionotropic P2X7 receptor suggested this molecule as a promising target for host-directed therapy in severe pulmonary tuberculosis. In this study, we assessed the effects of P2X7 pharmacological blockade on disease severity. First, we observed an increase in P2RX7 gene expression in the peripheral blood of tuberculosis patients compared to healthy donors. Lung leukocytes of mice infected with hypervirulent mycobacteria also showed increased expression of the P2X7 receptor. P2X7 blockade in mice with advanced tuberculosis recapitulated in many aspects the disease in P2X7-deficient mice. P2X7-directed therapy reduced body weight loss and the development of inflammatory and necrotic lung lesions, as well as delayed mycobacterial growth. Lower TNF-α production by lung cells and a substantial reduction in the lung GR-1+ myeloid cell population were observed after P2X7 inhibition. The effector CD4+ T cell population also decreased, but IFN-γ production by lung cells increased. The presence of a large population with characteristics of myeloid dendritic cells, as well as the increase in IL-6 production by lung cells, also indicate a qualitative improvement in the pulmonary immune response due to P2X7 inhibition. These findings support the use of drugs that target the P2X7 receptor as a therapeutic strategy to improve the outcome of pulmonary tuberculosis.


Assuntos
Pneumonia , Tuberculose Pulmonar , Tuberculose , Animais , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Necrose , Receptores Purinérgicos P2X7
10.
J Infect Dis ; 223(3): 494-507, 2021 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-33206171

RESUMO

BACKGROUND: The role of myeloid-derived suppressor cells (MDSCs) in patients with severe tuberculosis who suffer from uncontrolled pulmonary inflammation caused by hypervirulent mycobacterial infection remains unclear. METHODS: This issue was addressed using C57BL/6 mice infected with highly virulent Mycobacterium bovis strain MP287/03. RESULTS: CD11b+GR1int population increased in the bone marrow, blood and lungs during advanced disease. Pulmonary CD11b+GR1int (Ly6GintLy6Cint) cells showed granularity similar to neutrophils and expressed immature myeloid cell markers. These immature neutrophils harbored intracellular bacilli and were preferentially located in the alveoli. T-cell suppression occurred concomitantly with CD11b+GR1int cell accumulation in the lungs. Furthermore, lung and bone marrow GR1+ cells suppressed both T-cell proliferation and interferon γ production in vitro. Anti-GR1 therapy given when MDSCs infiltrated the lungs prevented expansion and fusion of primary pulmonary lesions and the development of intragranulomatous caseous necrosis, along with increased mouse survival and partial recovery of T-cell function. Lung bacterial load was reduced by anti-GR1 treatment, but mycobacteria released from the depleted cells proliferated extracellularly in the alveoli, forming cords and clumps. CONCLUSIONS: Granulocytic MDSCs massively infiltrate the lungs during infection with hypervirulent mycobacteria, promoting bacterial growth and the development of inflammatory and necrotic lesions, and are promising targets for host-directed therapies.


Assuntos
Granulócitos , Pulmão/metabolismo , Mycobacterium bovis , Células Supressoras Mieloides , Tuberculose , Animais , Antígenos Ly , Medula Óssea , Antígeno CD11b , Proliferação de Células , Modelos Animais de Doenças , Granulócitos/imunologia , Imunomodulação , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis/patogenicidade , Células Mieloides , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Neutrófilos , Tuberculose/patologia
11.
Sci Rep ; 9(1): 7575, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110285

RESUMO

Malaria causes hepatic inflammation and damage, which contribute to disease severity. The pro-inflammatory cytokine interleukin (IL)-1α is released by non-hematopoietic or hematopoietic cells during liver injury. This study established the role of IL-1α in the liver pathology caused by blood-stage P. chabaudi malaria. During acute infection, hepatic inflammation and necrosis were accompanied by NLRP3 inflammasome-independent IL-1α production. Systemically, IL-1α deficiency attenuated weight loss and hypothermia but had minor effects on parasitemia control. In the liver, the absence of IL-1α reduced the number of TUNEL+ cells and necrotic lesions. This finding was associated with a lower inflammatory response, including TNF-α production. The main source of IL-1α in the liver of infected mice was inflammatory cells, particularly neutrophils. The implication of IL-1α in liver inflammation and necrosis caused by P. chabaudi infection, as well as in weight loss and hypothermia, opens up new perspectives for improving malaria outcomes by inhibiting IL-1 signaling.


Assuntos
Inflamação/imunologia , Interleucina-1alfa/imunologia , Fígado/patologia , Malária/imunologia , Plasmodium chabaudi/imunologia , Animais , Inflamação/parasitologia , Inflamação/patologia , Fígado/imunologia , Fígado/parasitologia , Malária/parasitologia , Malária/patologia , Masculino , Camundongos Endogâmicos C57BL , Necrose , Fator de Necrose Tumoral alfa/imunologia
13.
J Infect Dis ; 219(6): 964-974, 2019 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-30307561

RESUMO

BACKGROUND: Tuberculous pneumonia, necrotic granulomatous lesions, and bacterial dissemination characterize severe forms of mycobacterial infection. METHODS: To evaluate the pulmonary CD4+ T-cell response during severe tuberculosis, C57BL/6 mice were infected with approximately 100 bacilli of 3 hypervirulent mycobacterial isolates (Mycobacterium tuberculosis strain Beijing 1471 and Mycobacterium bovis strains B2 and MP287/03) or the H37Rv M tuberculosis strain as reference for mycobacterial virulence. Because high expression of both CD39 and CD73 ectonucleotidases was detected on parenchymal CD4+ T cells, we investigated whether CD4+ T-cell suppression in the context of severe disease was due to the extracellular adenosine accumulation that resulted from tissue damage. RESULTS: Lowest expression of CD69, which is an activation marker implicated in maintaining cells in tissues, was observed in lungs from mice displaying the most severe pulmonary pathology. Reduced interferon (IFN)γ-producing CD4+ T cells were also found in the lung of these mice. Intranasal administration of the adenosine receptor antagonist caffeine substantially enhanced the frequency and number of parenchymal CD4+ T cells as well as both CD69 expression and IFNγ production. CONCLUSIONS: These results indicate that adenosine, which may be generated by extracellular adenosine triphosphate degradation, impairs the parenchymal CD4+ T-cell response and contributes to the development of severe tuberculosis.


Assuntos
Linfócitos T CD4-Positivos/patologia , Pulmão/patologia , Tuberculose Pulmonar/patologia , 5'-Nucleotidase/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Cafeína/farmacologia , Interferon gama/metabolismo , Lectinas Tipo C/metabolismo , Pulmão/microbiologia , Camundongos Endogâmicos C57BL , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptores Purinérgicos P1/metabolismo , Transdução de Sinais , Tuberculose Pulmonar/microbiologia
14.
PLoS One ; 13(8): e0202522, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30148845

RESUMO

Protective immunity to blood-stage malaria is attributed to Plasmodium-specific IgG and effector-memory T helper 1 (Th1) cells. However, mice lacking the costimulatory receptor CD28 (CD28KO) maintain chronic parasitemia at low levels and do not succumb to infection, suggesting that other immune responses contribute to parasite control. We report here that CD28KO mice develop long-lasting non-sterile immunity and survive lethal parasite challenge. This protection correlated with a progressive increase of anti-parasite IgM serum levels during chronic infection. Serum IgM from chronically infected CD28KO mice recognize erythrocytes infected with mature parasites, and effectively control Plasmodium infection by promoting parasite lysis and uptake. These antibodies also recognize autoantigens and antigens from other pathogens. Chronically infected CD28KO mice have high numbers of IgM+ plasmocytes and experienced B cells, exhibiting a germinal-center independent Fas+GL7-CD38+CD73- phenotype. These cells are also present in chronically infected C57BL/6 mice although in lower numbers. Finally, IgM+ experienced B cells from cured C57BL/6 and CD28KO mice proliferate and produce anti-parasite IgM in response to infected erythrocytes. This study demonstrates that CD28 deficiency results in the generation of germinal-center independent IgM+ experienced B cells and the production of protective IgM during experimental malaria, providing evidence for an additional mechanism by which the immune system controls Plasmodium infection.


Assuntos
Antígenos CD28/genética , Imunoglobulina M/imunologia , Malária/genética , Plasmodium chabaudi/imunologia , 5'-Nucleotidase/genética , ADP-Ribosil Ciclase 1/genética , Animais , Anticorpos Antiprotozoários/genética , Anticorpos Antiprotozoários/imunologia , Antígenos de Diferenciação/genética , Linfócitos B/imunologia , Linfócitos B/parasitologia , Antígenos CD28/deficiência , Antígenos CD28/imunologia , Linfócitos T CD4-Positivos/imunologia , Eritrócitos/parasitologia , Centro Germinativo/imunologia , Centro Germinativo/parasitologia , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina M/sangue , Malária/sangue , Malária/imunologia , Malária/parasitologia , Camundongos , Camundongos Knockout , Plasmodium chabaudi/patogenicidade , Receptor fas/genética
15.
PLoS Negl Trop Dis ; 12(8): e0006617, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30067739

RESUMO

Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.


Assuntos
Cardiomiopatia Chagásica/imunologia , Fator 88 de Diferenciação Mieloide/metabolismo , Miócitos Cardíacos/metabolismo , Trypanosoma cruzi/imunologia , Animais , Linhagem Celular , Cardiomiopatia Chagásica/metabolismo , Citocinas/genética , Citocinas/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Humanos , Camundongos Knockout , Camundongos Transgênicos , Fator 88 de Diferenciação Mieloide/genética , Miocárdio/imunologia , Miocárdio/metabolismo , RNA Mensageiro , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tamoxifeno/farmacologia
16.
Front Immunol ; 9: 997, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867974

RESUMO

Chagas disease is a neglected parasitic infection that affects around six to seven million people, mainly in Latin America. About 30-35% of infected people present chronic Chagas cardiomyopathy (CCC), which eventually leads to death. This condition is characterized by local parasite persistence and leukocyte infiltration. In a murine model of CCC, we observed that among infiltrating leukocytes, CD4+ and CD8+ T cells were in higher frequency in the heart of chronically infected mice, although elevated expression of the regulatory molecules programmed cell death protein 1 (PD1) and PDL1 suggested these cells could be inhibited. To investigate if PD1-PDL1 interaction in the heart of chronically infected mice negatively impacts on the local immune response, facilitating parasite persistence, and progression to CCC, we attempted to recover the local immune response by treating chronically infected mice with anti-PD1 and anti-PDL1-blocking antibodies together with irradiated Trypanosoma cruzi, which provides immune response boosting. Irradiated parasites promote expression of costimulatory molecules in dendritic cells and provide specific parasite antigen, which should aid T cell reactivation upon checkpoint blockade. Following treatment, there was an increased frequency of heart-infiltrating CD4+ and CD8+ T cells with an effector memory phenotype, an increased histopathology score and decreased heart rate, supporting our previous hypothesis of local immunosuppression induced by this pathway during CCC. In addition, blood parasitemia was reduced, which was associated with increased T. cruzi-specific immunoglobulin G 1 antibodies. However, no difference was observed in cytokine production or T. cruzi burden in the hearts of treated mice. Taken together, our results suggest PD1-PDL1 interaction protects the heart from excessive immune response.


Assuntos
Antígeno B7-H1/metabolismo , Cardiomiopatia Chagásica/prevenção & controle , Traumatismos Cardíacos/prevenção & controle , Receptor de Morte Celular Programada 1/metabolismo , Animais , Antígeno B7-H1/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Doença de Chagas/complicações , Doença de Chagas/imunologia , Modelos Animais de Doenças , Feminino , Traumatismos Cardíacos/parasitologia , Ativação Linfocitária/imunologia , Camundongos , Receptor de Morte Celular Programada 1/genética , Trypanosoma cruzi/imunologia
17.
PLoS Pathog ; 13(8): e1006595, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28859168

RESUMO

A complete understanding of the mechanisms underlying the acquisition of protective immunity is crucial to improve vaccine strategies to eradicate malaria. However, it is still unclear whether recognition of damage signals influences the immune response to Plasmodium infection. Adenosine triphosphate (ATP) accumulates in infected erythrocytes and is released into the extracellular milieu through ion channels in the erythrocyte membrane or upon erythrocyte rupture. The P2X7 receptor senses extracellular ATP and induces CD4 T cell activation and death. Here we show that P2X7 receptor promotes T helper 1 (Th1) cell differentiation to the detriment of follicular T helper (Tfh) cells during blood-stage Plasmodium chabaudi malaria. The P2X7 receptor was activated in CD4 T cells following the rupture of infected erythrocytes and these cells became highly responsive to ATP during acute infection. Moreover, mice lacking the P2X7 receptor had increased susceptibility to infection, which correlated with impaired Th1 cell differentiation. Accordingly, IL-2 and IFNγ secretion, as well as T-bet expression, critically depended on P2X7 signaling in CD4 T cells. Additionally, P2X7 receptor controlled the splenic Tfh cell population in infected mice by promoting apoptotic-like cell death. Finally, the P2X7 receptor was required to generate a balanced Th1/Tfh cell population with an improved ability to transfer parasite protection to CD4-deficient mice. This study provides a new insight into malaria immunology by showing the importance of P2X7 receptor in controlling the fine-tuning between Th1 and Tfh cell differentiation during P. chabaudi infection and thus in disease outcome.


Assuntos
Diferenciação Celular/imunologia , Ativação Linfocitária/imunologia , Malária/imunologia , Receptores Purinérgicos P2X7/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Transferência Adotiva , Animais , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , ELISPOT , Eritrócitos/parasitologia , Feminino , Imunofluorescência , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasmodium chabaudi/imunologia
18.
Front Immunol ; 8: 435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28450867

RESUMO

Tuberculosis (TB) remains a serious public health problem despite the great scientific advances in the recent decades. We have previously shown that aggressive forms of TB caused by hypervirulent strains of Mycobacterium tuberculosis and Mycobacterium bovis are attenuated in mice lacking the P2X7 receptor, an ion channel activated by extracellular ATP. Therefore, P2X7 receptor is a potential target for therapeutic intervention. In vitro, hypervirulent mycobacteria cause macrophage death by a P2X7-dependent mechanism that facilitates bacillus dissemination. However, as P2X7 receptor is expressed in both bone marrow (BM)-derived cells and lung structural cells, several cellular mechanisms can operate in vivo. To investigate whether the presence of P2X7 receptor in BM-derived cells contributes to TB severity, we generated chimeric mice by adoptive transfer of hematopoietic cells from C57BL/6 or P2X7-/- mice into CD45.1 irradiated mice. After infection with hypervirulent mycobacteria (MP287/03 strain of M. bovis), P2X7-/->CD45.1 mice recapitulated the TB resistance observed in P2X7-/- mice. These chimeric mice showed lower lung bacterial load and attenuated pneumonia compared to C57BL/6>CD45.1 mice. Lung necrosis and bacterial dissemination to the spleen and liver were also reduced in P2X7-/->CD45.1 mice compared to C57BL/6>CD45.1 mice. Furthermore, an immature-like myeloid cell population showing a Ly6Gint phenotype was observed in the lungs of infected C57BL/6 and C57BL/6>CD45.1 mice, whereas P2X7-/- and P2X7-/->CD45.1 mice showed a typical neutrophil (Ly6Ghi) population. This study clearly demonstrates that P2X7 receptor in BM-derived cells plays a critical role in the progression of severe TB.

19.
Purinergic Signal ; 13(2): 143-152, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27866341

RESUMO

Leishmania amazonensis is the etiological agent of diffuse cutaneous leishmaniasis. The immunopathology of leishmaniasis caused by L. amazonensis infection is dependent on the pathogenic role of effector CD4+ T cells. Purinergic signalling has been implicated in resistance to infection by different intracellular parasites. In this study, we evaluated the role of the P2X7 receptor in modulating the immune response and susceptibility to infection by L. amazonensis. We found that P2X7-deficient mice are more susceptible to L. amazonensis infection than wild-type (WT) mice. P2X7 deletion resulted in increased lesion size and parasite load. Our histological analysis showed an increase in cell infiltration in infected footpads of P2X7-deficient mice. Analysis of the cytokine profile in footpad homogenates showed increased levels of IFN-γ and decreased TGF-ß production in P2X7-deficient mice, suggesting an exaggerated pro-inflammatory response. In addition, we observed that CD4+ and CD8+ T cells from infected P2X7-deficient mice exhibit a higher proliferative capacity than infected WT mice. These data suggest that P2X7 receptor plays a key role in parasite control by regulating T effector cells and inflammation during L. amazonensis infection.


Assuntos
Leishmaniose Tegumentar Difusa/imunologia , Receptores Purinérgicos P2X7/imunologia , Animais , Inflamação/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
20.
J Allergy Clin Immunol ; 139(3): 900-912.e7, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27554817

RESUMO

BACKGROUND: CD40 ligand (CD40L) deficiency predisposes to opportunistic infections, including those caused by fungi and intracellular bacteria. Studies of CD40L-deficient patients reveal the critical role of CD40L-CD40 interaction for the function of T, B, and dendritic cells. However, the consequences of CD40L deficiency on macrophage function remain to be investigated. OBJECTIVES: We sought to determine the effect of CD40L absence on monocyte-derived macrophage responses. METHODS: After observing the improvement of refractory disseminated mycobacterial infection in a CD40L-deficient patient by recombinant human IFN-γ (rhIFN-γ) adjuvant therapy, we investigated macrophage functions from CD40L-deficient patients. We analyzed the killing activity, oxidative burst, cytokine production, and in vitro effects of rhIFN-γ and soluble CD40 ligand (sCD40L) treatment on macrophages. In addition, the effect of CD40L absence on the macrophage transcriptome before and after rhIFN-γ treatment was studied. RESULTS: Macrophages from CD40L-deficient patients exhibited defective fungicidal activity and reduced oxidative burst, both of which improved in the presence of rhIFN-γ but not sCD40L. In contrast, rhIFN-γ and sCD40L ameliorate impaired production of inflammatory cytokines. Furthermore, rhIFN-γ reversed defective control of Mycobacterium tuberculosis proliferation by patients' macrophages. The absence of CD40L dysregulated the macrophage transcriptome, which was improved by rhIFN-γ. Additionally, rhIFN-γ increased expression levels of pattern recognition receptors, such as Toll-like receptors 1 and 2, dectin 1, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin in macrophages from both control subjects and patients. CONCLUSION: Absence of CD40L impairs macrophage development and function. In addition, the improvement of macrophage immune responses by IFN-γ suggests this cytokine as a potential therapeutic option for patients with CD40L deficiency.


Assuntos
Ligante de CD40/deficiência , Síndromes de Imunodeficiência/imunologia , Interferon gama/farmacologia , Macrófagos/efeitos dos fármacos , Adolescente , Adulto , Células Cultivadas , Criança , Pré-Escolar , Humanos , Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Monócitos/citologia , Mycobacterium tuberculosis , Fagocitose , Transcriptoma/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...