Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 101(19): 195004, 2008 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-19113279

RESUMO

We study the propagation of lower-hybrid-type resonance cones in a tenuous magnetized plasma, and, in particular, their interaction with, and reflection from, the plasma sheath near a conducting wall. The sheath is modeled as a vacuum gap whose width is given by the Child-Langmuir law. The application of interest is when the resonance cones are launched (parasitically) by an ion-cyclotron radio-frequency antenna in a typical rf-heated tokamak fusion experiment. We calculate the fraction of launched voltage in the resonance cones that is transmitted to the sheath, and show that it has a sensitive thresholdlike turn on when a critical parameter reaches order unity. Above threshold, the fractional voltage transmitted to the sheath is order unity, leading to strong and potentially deleterious rf-wall interactions in tokamak rf heating experiments. Below threshold, these interactions can be avoided.

2.
Phys Rev Lett ; 93(26 Pt 1): 265001, 2004 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-15697984

RESUMO

Propagating filaments of enhanced plasma density, or blobs, observed in 3D numerical simulations of a diverted, neutral-fueled tokamak are studied. Fluctuations of vorticity, electrical potential phi, temperature Te, and current density J parallel associated with the blobs have a dipole structure perpendicular to the magnetic field and propagate radially with large E x B drift velocities (>1 km/s). The simulation results are consistent with a 3D blob dynamics model that incorporates increased parallel plasma resistivity (from neutral cooling of the X-point region), blob disconnection from the divertor sheath, X-point closure of the current loops, and collisional physics to sustain the phi, Te, J parallel dipoles.

3.
Phys Rev Lett ; 90(19): 195001, 2003 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-12785951

RESUMO

A two-dimensional integral full-wave model is used to calculate poloidal forces driven by mode conversion in tokamak plasmas. In the presence of a poloidal magnetic field, mode conversion near the ion-ion hybrid resonance is dominated by a transition from the fast magnetosonic wave to the slow ion cyclotron wave. The poloidal field generates strong variations in the parallel wave spectrum that cause wave damping in a narrow layer near the mode conversion surface. The resulting poloidal forces in this layer drive sheared poloidal flows comparable to those in direct launch ion Bernstein wave experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...