Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 10(10)2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998450

RESUMO

BACKGROUND: circulating tumor DNA (ctDNA) is a source of tumor genetic material for EGFR testing in NSCLC. Real-word data about liquid biopsy (LB) clinical practice are lacking. The aim of the study was to describe the LB practice for EGFR detection in North Eastern Italy. METHODS: we conducted a multi-regional survey on ctDNA testing practices in lung cancer patients. RESULTS: Median time from blood collection to plasma separation was 50 min (20-120 min), median time from plasma extraction to ctDNA analysis was 24 h (30 min-5 days) and median turnaround time was 24 h (6 h-5 days). Four hundred and seventy five patients and 654 samples were tested. One hundred and ninety-two patients were tested at diagnosis, with 16% EGFR mutation rate. Among the 283 patients tested at disease progression, 35% were T790M+. Main differences in LB results between 2017 and 2018 were the number of LBs performed for each patient at disease progression (2.88 vs. 1.2, respectively) and the percentage of T790M+ patients (61% vs. 26%).

3.
J Neurosci ; 33(46): 17995-8007, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24227711

RESUMO

During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the ß1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with ß1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding ß1 integrins in Schwann cells and show that only α6ß1 and α7ß1 integrins are required and that α7ß1 compensates for the absence of α6ß1 during development. The absence of either α7ß1 or α6ß1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all ß1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6ß1 and α7ß1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell ß1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.


Assuntos
Axônios/fisiologia , Integrina alfa6beta1/fisiologia , Integrinas/fisiologia , Células de Schwann/fisiologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Proliferação de Células , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Células de Schwann/ultraestrutura
4.
Arterioscler Thromb Vasc Biol ; 32(9): 2178-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22814752

RESUMO

OBJECTIVE: Emilin-1 is a protein of elastic extracellular matrix involved in blood pressure (BP) control by negatively affecting transforming growth factor (TGF)-ß processing. Emilin1 null mice are hypertensive. This study investigates how Emilin-1 deals with vascular mechanisms regulating BP. METHODS AND RESULTS: This study uses a phenotype rescue approach in which Emilin-1 is expressed in either endothelial cells or vascular smooth muscle cells of transgenic animals with the Emilin1(-/-) background. We found that normalization of BP required Emilin-1 expression in smooth muscle cells, whereas expression of the protein in endothelial cells did not modify the hypertensive phenotype of Emilin1(-/-) mice. We also explored the effect of treatment with anti-TGF-ß antibodies on the hypertensive phenotype of Emilin1(-/-) mice, finding that neutralization of TGF-ß in Emilin1 null mice normalized BP quite rapidly (2 weeks). Finally, we evaluated the vasoconstriction response of resistance arteries to perfusion pressure and neurohumoral agents in different transgenic mouse lines. Interestingly, we found that the hypertensive phenotype was coupled with an increased arteriolar myogenic response to perfusion pressure, while the vasoconstriction induced by neurohumoral agents remained unaffected. We further elucidate that, as for the hypertensive phenotype, the increased myogenic response was attributable to increased TGF-ß activity. CONCLUSIONS: Our findings clarify that Emilin-1 produced by vascular smooth muscle cells acts as a main regulator of resting BP levels by controlling the myogenic response in resistance arteries through TGF-ß.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Vasoconstrição , Animais , Anticorpos Neutralizantes/administração & dosagem , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Monitorização Ambulatorial da Pressão Arterial/métodos , Relação Dose-Resposta a Droga , Ecocardiografia Doppler , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Genótipo , Humanos , Hipertensão/genética , Hipertensão/fisiopatologia , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Telemetria , Fatores de Tempo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/genética , Vasoconstritores/farmacologia
5.
J Cell Biol ; 177(6): 1063-75, 2007 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-17576799

RESUMO

Myelin is a multispiraled extension of glial membrane that surrounds axons. How glia extend a surface many-fold larger than their body is poorly understood. Schwann cells are peripheral glia and insert radial cytoplasmic extensions into bundles of axons to sort, ensheath, and myelinate them. Laminins and beta1 integrins are required for axonal sorting, but the downstream signals are largely unknown. We show that Schwann cells devoid of beta1 integrin migrate to and elongate on axons but cannot extend radial lamellae of cytoplasm, similar to cells with low Rac1 activation. Accordingly, active Rac1 is decreased in beta1 integrin-null nerves, inhibiting Rac1 activity decreases radial lamellae in Schwann cells, and ablating Rac1 in Schwann cells of transgenic mice delays axonal sorting and impairs myelination. Finally, expressing active Rac1 in beta1 integrin-null nerves improves sorting. Thus, increased activation of Rac1 by beta1 integrins allows Schwann cells to switch from migration/elongation to the extension of radial membranes required for axonal sorting and myelination.


Assuntos
Axônios , Integrina beta1/fisiologia , Bainha de Mielina , Neuropeptídeos/metabolismo , Células de Schwann/citologia , Proteínas rac de Ligação ao GTP/metabolismo , Animais , Movimento Celular , Extensões da Superfície Celular , Laminina , Camundongos , Camundongos Transgênicos , Ratos , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...